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Abstract

Quercus pyrenaica is a woody species of high landscape value, however,
its forests show an advanced state of degradation in the Iberian Peninsula.
Afforestation typically has low success, thus, it is necessary to improve the
fitness of oaks plantlets to be transplanted, for instance, by inoculating ben-
eficial microorganisms. In adding microorganisms to ecosystems, there
must be balanced efficacy with potential effects on native microbial commu-
nities. We addressed changes in diversity, richness, composition and
co-occurrence networks of prokaryotic communities in the rhizosphere of
inoculated and control trees outplanted to three different sites located in the
Sierra Nevada National and Natural Park (Spain). After 18 months in wild
conditions, we did not detect changes due to the inoculation in the richness,
diversity and structure in none of the sites. However, we observed an
increase in the complexity of the co-occurrence networks in two experimen-
tal areas. Modularization of the networks changed as a result of the inocula-
tion, although the sense of the change depended on the site. Although it
was impossible to unravel the effect of bacterial inoculation, our results
highlighted that inoculation alters the association of rhizosphere bacteria
without entailing other changes, so networks should be analysed prior to
inoculating the plantlets.

et al., 2021). Despite its high landscape value, melojo
oak forests have faced a dramatic reduction in their dis-

Quercus pyrenaica Willd., commonly known as melojo
oak, is a key tree species of Mediterranean forests,
such as the Sierra Nevada National and Natural Park
(Southeast Spain), the most southern mountainous
area in Europe where this species can be found (Nieto
Quintano et al., 2016). The ecosystem services derived
from Q. pyrenaica are numerous and valuable: among
others, melojo oaks are superb soil builders and protec-
tors (Pérez-Luque et al., 2021) and its forests act as
excellent biodiversity reservoirs (Lasa, Masinova,
et al., 2019; Nieto Quintano et al., 2016; Pérez-Luque

tribution area and show a worrying state of deterioration
nowadays (Camacho-Olmedo et al.,, 2002; Pérez-
Luque et al., 2021). Two of the most commonly pro-
posed strategies to boost the expansion and vigour of
Q. pyrenaica formations are the afforestation of moun-
tainous areas and the naturalization of stands that for-
merly were melojo oak forests (Aspizua et al., 2012;
Bonet et al., 2015). To overcome the frequent high mor-
tality rate of the introduced plantlets (Gémez-Aparicio
et al., 2004), afforestation tasks should be performed
with vigorous plantlets resilient to harsh forest
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conditions (KarliCic et al., 2016). Some studies have
already demonstrated the beneficial effects of Plant
Growth Promoting Microorganisms (PGPM) inoculation
on woody plants’ vigour (Anand et al., 2013; Karli¢i¢
et al., 2015; Lucas-Garcia et al, 2004; Mafia
et al., 2009; Puente et al., 2010). In particular, bacterial
inoculation of plantlets at the nursery stage followed by
outplanting in the field is a promising strategy to
improve the efficiency of afforestation tasks
(Chanway, 1997; Gémez-Lama Cabanas et al., 2018).

Notwithstanding the above, very little is known
about the ecological impact of bacterial inoculations in
wild conditions. Formulations based on microorganisms
(bioformulations) set aside for agricultural or forestry
purposes still have major bottlenecks that should be
overcome (Kaminsky et al., 2019). On the one hand,
bacteria included in the bioformulations might be
excluded by the plant host microbiota through competi-
tive mechanisms (Maghnia et al., 2019). On the other
hand, invasion phenomena mediated by the introduced
bacteria may occur, which could trigger the displace-
ment of some native taxa (Mallon et al., 2015). On the
contrary, other authors have demonstrated that plant
inoculation can entail an increase in the diversity of the
resident communities (Ciccillo et al., 2002). These
inoculation-associated changes are the result of the
complex networks of interactions (e.g., positive, nega-
tive, or neutral) that take place between microorgan-
isms (Faust & Raes, 2012; Karimi et al., 2017). As a
result, they can recruit or exclude other microorganisms
(for instance, PGPM or plant pathogens), having a
great regulatory effect on the community assembly
(Toju et al., 2018). If a plant acts on a microbe that
interacts with many network members, it can transmit
the information to the whole microbial network (Agler
et al., 2016). Thus, these interactions can have direct
consequences on host health but also on soil fertility
and the surrounding environment (van der Heijden &
Hartmann, 2016).

Beyond the functional screenings for PGPM and
classical microbial diversity analyses, it is also impor-
tant to unravel whether the PGPM included in the bio-
formulations  establish interactions with  other
microorganisms of the studied ecosystem, employing
co-occurrence network analyses (Barberan et al., 2012;
Faust & Raes, 2012). Although this approach is still in
its infancy and suggested hypotheses should be vali-
dated experimentally, it offers the opportunity to gain
more insights into the taxa that are most likely to medi-
ate interactions within microbial populations and to pre-
dict the efficiency of the microbiome-based
afforestation tasks (Toju et al., 2018 and references
therein).

The main aim of this work was to assess the long-
term downstream impact of the inoculation of melojo
oak plantlets with a bacterial consortium composed of
two strains previously isolated from the National Park

of Sierra Nevada on native rhizosphere bacterial com-
munities. For that purpose, we followed a holistic strat-
egy based on deep sequencing which comprised the
study of the diversity, structure, taxonomic profiles and
co-occurrence networks of inoculated plantlets in com-
parison with controls (not inoculated), after 18 months
in wild conditions. We hypothesize that there are no
long-term differences between the inoculated and con-
trol plants in terms of diversity, taxonomical profiles and
association of microbial communities, as the equilib-
rium of the ecosystem under study is re-established
over time.

EXPERIMENTAL PROCEDURES

Bacterial inoculation, field studies and
sample collection

In November 2012, approximately 4000 Q. pyrenaica
acorns were collected manually in melojo oak forests
located on the slopes of the municipal district of Canar,
National Park of Sierra Nevada (Granada, Spain).
Within 48 h, acorns were sowed in pots containing non-
sterile peat (one acorn per pot) and grown in the com-
mercial nursery Paisajes del Sur (Colomera, Granada,
Spain) under environmental conditions for 6 months.
Thus, in May 2013, when plantlets were actively grow-
ing, they were inoculated with a bacterial consortium
composed of two strains previously isolated from the
Sierra Nevada National and Natural Park. On the one
hand, Bradyrhizobium canariense GV101, which was
one of the most abundant genera in the oak rhizo-
sphere and in the soil of one of the sites studied in this
work (located in the municipality of Cafar, Cobo-Diaz
etal., 2014; Cobo-Diaz et al., 2017; see Table S1). Fur-
thermore, previous studies have suggested the genus
Bradyrhizobium is one of the most metabolically active
in the rhizosphere of melojo oaks (Lasa, Fernandez-
Gonzalez, et al., 2019). On the other hand, we were
interested in the genus Arthrobacter because of its high
abundance in the rhizosphere of holm-oak trees after a
wildfire that took place in 2005 in the National Park of
Sierra Nevada. In particular, the strain Arthrobacter glo-
biformis AFG20 was selected due to its plant growth-
promoting potential (Fernandez-Gonzalez et al., 2017).
This strain can solubilize inorganic phosphate, and pro-
duce organic matter degrading enzymes, cellulose and
the phytohormone indole acetic acid (IAA), all of them
related to plant growth promotion.

These two strains had been never employed in any
previous inoculation experiments on plants belonging
to the genus Quercus.

Bradyrhizobium and Arthrobacter strains were
grown on Yeast Extract Mannitol (YEM) and HH’
(Fernandez-Gonzalez et al., 2017) liquid media,
respectively, at 28°C on a rotatory shaker (170 rpm)
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during 24—-72 h. 100 pL of a bacterial suspension of
each strain (10° cfu/mL) in sterile NaCl solution (0.9%
v/v) were inoculated on the root collar of each plantlet.
Plantlets not treated with the consortium (negative con-
trols) were inoculated with 100 uL of sterile NaCl solu-
tion (0.9%, v/v) in the same way. Inoculation was done
without calculation of the root surface since it is quite
risky for the seedling survival because the seedlings
were 6 months old at the time of the first inoculation.
However, the amount of bacterial inoculum was signifi-
cant since 108 cfu were applied to each tree directly
below the stem crown over the beginning of the radicu-
lar system; thus bacteria can spread on tree roots. The
experimental design included 800 plantlets in each con-
dition. All the plantlets (1600) were kept in the commer-
cial nursery for six additional months watering them
regularly with tap water. In November 2013, plants
were reinoculated as described above to minimize the
possibility of the inoculum being lost. That is to say, a
first inoculum in springtime with plantlet active growth
and a second one in autumntime before the period of
plant dormancy. One month later (just when plants
began to lose the leaves) they were outplanted to three
areas located in the Sierra Nevada National and Natu-
ral Park. Two places were selected in the municipality
of Canar: AZC (Afforested Zone in Cafar), character-
ized by a densely padded brushwood of the legume
Genista versicolor; and NPF (Naturalized Pine Forest),
which was covered by a Scot pine forest (Pinus sylves-
tris) developed in the context of an afforestation pro-
gram in the 1950s, and thinned out during the spring of
2013 (Lasa, Masinov4, et al., 2019). On the other hand,
a third mountainous site was chosen in the nearby val-
ley of Lanjaron River (AZL, Afforested Zone in
Lanjarén), which was affected by a wildfire in
September 2005 and where plenty of leguminous
plants and some resprouted holm-oak trees (Q. ilex
subsp. ballota) were found. The main characteristics,
altitude and coordinates of each study area are detailed
in Table S1.

Within each site, three sampling plots (15 x 15 m)
were delimited along a 1 km length and outplanting
practices were performed there. Ten rows were marked
in each plot: control trees and 10 melojo oaks (one-
year-old) per row were outplanted, alternating bacteri-
ally inoculated (1-1.5m apart). A total of 900 trees
(450 corresponding to each treatment) were outplanted
altogether. The experimental design is summarized in
Figure S1. It should be pointed out that the authorities
of the Sierra Nevada National and Natural Park were
actively involved in the afforestation works.

To assess the long-term effect of bacterial inocula-
tion, 18 months after the outplanting practices (May
2015) eight randomly selected control and inoculated
trees were uprooted at each study site to obtain rhizo-
sphere soil (48 trees in total, see Figure S1). Oak roots
were manually rubbed until 2 g of rhizosphere soil were

obtained, which were mixed with 5 mL of LifeGuard™
Soil Preservation Solution (MoBio Laboratories Inc.) to
maintain microbial community profiles and immediately
stored at 4°C until DNA extraction.

A total of 200 g of the soil near the roots (per tree)
was collected to determine the edaphic properties. Soil
physicochemical analyses were performed at the Agri-
food laboratory of the Andalusian Regional Govern-
ment under the standardized protocols developed by
this service.

DNA extraction and lllumina sequencing

Soil DNA was extracted from each sample within 24 h
of sample collection using the PowerSoil™ DNA Isola-
tion Kit (MoBio, USA), according to the manufacturer’s
recommendations. DNA quality and yield were checked
using the fluorometer Qubit® 3.0 and the Qubit® dsDNA
High Sensitivity Assay Kit (Life Technologies, USA).
The hypervariable regions V4-V5 of the prokaryotic
16S rRNA gene were sequenced using U519F and
U926R primers described by Suzuki and Giovannoni
(1996) and Baker et al. (2003), respectively. Library
preparation and sequencing were carried out by Macro-
gen Incorporated (Korea). For that purpose, a
2 x 300 bp strategy was followed and the lllumina
MiSeq platform was used.

Deep-sequencing data processing

The quality of sequencing reads was checked with the
bioinformatic tool FastQC v.0.11.5 (Andrews, 2010)
and they were end-trimmed by using the software
FASTX-Toolkit v.0.0.14 (FASTX-Tookit, 2009), specifi-
cally, running the script fastx_trimmer. All low-quality
sequences were removed, guaranteeing values of Q
score (Q) higher than 19. The script fastq-join
(Aronesty, 2011) was then employed to overlap paired-
end reads. For that purpose, an overlapping size of
40 bp was selected, allowing a maximum of 15% of
mismatches in the overlapping region. An additional
step of trimming was performed using the software
SEED2 (Vétrovsky et al., 2018) in which overlapped
sequences with an average quality value lower than
Q30 were discarded. The trimming process also
included the removal of specific primers. In addition,
those sequences shorter than 362 bp, with ambiguities,
or with at least one nucleotide with a quality lower than
Q10 were eliminated. Next, the software Mothur
v.1.40.5 (Schloss et al., 2009) was employed to remove
chimeric sequences using SILVA gold fasta as a refer-
ence (Quast et al., 2013). Quality sequences were sub-
sequently clustered into Operational Taxonomic Units
(OTUs) at 3% of genetic distance utilizing the algorithm
UPARSE included in the USEARCH V. 8.1.161 tool
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(Edgar, 2013). As recommended by Bokulich et al.
(2013), those OTUs that accounted for less than
0.005% of the total sequences were removed from the
analysis. Finally, OTUs were taxonomically classified
using the Ribosomal Database Project (RDP) 16S
rRNA reference database, specifically the training set
v.16 previously formatted with Mothur (Cole
et al., 2014). All the sequences that were classified as
chloroplasts, mitochondria or that could not be identi-
fied at the kingdom level were discarded from the
dataset.

Analysis of the diversity and structure of
prokaryotic communities

All the ecological analyses were performed using differ-
ent packages and functions developed in the statistical
tool R v.4.1.2 (R Development Team, 2016). Rarefac-
tion curves were obtained employing the function rare-
curve included in the package vegan (Oksanen
et al., 2016). A rarefaction step was carried out to the
minimum library size with the function rarefy_even_-
depth of package phyloseq (McMurdie &
Holmes, 2013) to avoid biases associated with different
sample sizes. Chao-1, Shannon (H’), Simpson’s
inverse (1/D) and Pielou (J’) alpha diversity indices
were then computed (function estimate_richness, pack-
age phyloseq). Good’s coverage was also calculated.
All these estimations were calculated at the OTU level.

All the sequences of the dataset (non-rarefied) were
taken into account for all the analyses made hereafter
according to McMurdie and Holmes (2014). Sequences
were aligned by using the multiple alignment tool
MAFFT V.7040 (Katoh & Standley, 2013) and a phylo-
genetic tree was constructed using the software Fas-
tTree v.2.1.3 (Price et al., 2010). In terms of beta
diversity, a Constrained Analysis of Principal Coordi-
nates (CAP) was performed to elucidate the edaphic
parameters governing the structure of prokaryotic com-
munities. The functions capscale and ordistep (both
from the package vegan) were used for model building.
Then, the statistical significance of the edaphic param-
eters included in the model was checked through the
function envfit (vegan package), correcting the p-values
with the adjustment of Bonferroni. A non-parametric
permutational multivariate analysis of variance
(PERMANOVA) was conducted with 9999 permuta-
tions using the function adonis2, included in the pack-
age vegan. PERMANOVA was performed based on
Weighted UniFrac distances, which in turn were calcu-
lated from the previously computed phylogenetic tree.
The interaction between the main factors [Treatment
(two levels, Inoculated and Control) and Site
(three levels, NPF, AZC, AZL); model: response ~
Treatment*Site] was tested. Where applicable, differ-
ences between pairs of groups of samples were

calculated using the function pairwise. Adonis imple-
mented in the package pairwiseAdonis (Martinez-
Arbizu, 2017). In this case, p-values were corrected by
the  Benjamini-Hochberg method for  multiple
comparisons.

Differential abundance analysis of
rhizosphere communities

To determine which bacterial taxa were differentially
abundant between treatments or experimental areas,
the Analysis of Compositions of Microbiomes with Bias
Correction (ANCOM-BC) algorithm was implemented
(Lin & Peddada, 2020). For that purpose, the function
ancombc of the package ANCOMBC was used. The p-
values associated with each comparison were adjusted
by using Holm’s correction. The main factors
(Treatment and Site) were analysed independently in
the model.

In addition, potential differences in the abundance
of genera Bradyrhizobium and Arthrobacter between
control and inoculated trees were specifically
examined.

Co-occurrence network construction and
analysis

Co-occurrence networks were constructed as
described by Fernandez-Gonzalez et al. (2020). For
that purpose, networks were built independently for
each study site (NPF, AZL and AZC) and each condi-
tion (inoculated and control trees), all of them at the
OTU level. The six networks were constructed by using
the Molecular Ecological Network Analysis Pipeline
(MENAP) online server (http://ieg4.rccc.ou.edu/mena/
main.cgi) following the developer’'s suggestions (Deng
et al., 2012; Tao et al., 2018; Zhou et al., 2010; Zhou
et al., 2011). In brief, settings were adjusted to a preva-
lence cut-off of 50%, the Pearson coefficient was
selected for correlation calculation (as recommended
by the developers for these kinds of data), and modules
were separated by the greedy modularity optimization
method. Indirect relationships were removed from the
networks employing the iDIRECT framework (Inference
of Direct and Indirect Relationships with Effective
Copula-based Transitivity) (Xiao et al., 2022). In addi-
tion, 100 random networks were constructed for each
empirical network, with the same characteristics (num-
ber of nodes and links). After the randomization, the
standard deviations of the network’s global properties
were used in Student’s f-test to compare the average
cluster coefficient (avgCC), the Geodesic Distance
(GD) and the Modularity (M) values of empirical net-
works between treatments. Finally, the six co-
occurrence networks were plotted using the software
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Cytoscape v.3.7.1 (Shannon et al.,, 2003) and Z-P;
plots were obtained as well. Topological roles of each
node OTU were assigned based on within-module (Z;)
and among-module connectivity (P;): OTUs with an
associated Z; 2.5 and P; >0.62 were considered con-
nector OTUs, module hubs were defined as those with
a high value of Z; (>2.5) and low P; (£0.62), while net-
work hubs have high values of both parameters
(Z; >2.5 and P; >0.62) and peripherals values of Z; <2.5
and P; =0.62 (Olesen et al., 2007).

Univariant statistical analyses

All the statistical tests needed to compare the physi-
cochemical parameters of the soils and alpha diver-
sity indices among groups of samples were assessed
in R software. The normal distribution and homosce-
dasticity of each variable were checked with Shapiro—
Wilk’'s and Levene’s tests, by using shapiro.test (base
R) and leveneTest functions (included in package car;
Fox & Weisberg, 2011), respectively. When data met
the assumptions of normality and equality of vari-
ances, parametric approaches were applied to com-
pare groups of samples. Thus, a two-factor design
was followed in both cases to test the effect of the two
main factors [experimental site (three levels: AZC,
AZL, NPF) and treatment (two levels: inoculated and
control trees)] and their interaction on each alpha
diversity index or edaphic property. For that purpose,
a two-way ANOVA was computed employing the
function anova_test from the package rstatix
(Kassambara, 2021). Thus, the statistical model
tested was: response ~ Site*Treatment. pairwise_t_-
test (package rstatix) was applied as a post-hoc test
when applicable. The experimental design was
defined as balanced in all cases and confidence
levels >95% (a = 0.05) were taken into account for all
the statistical tests.

RESULTS
Soil physicochemical parameters

All analysed soils were sandy-loam soils with acidic pH
(Table S2). There was a significant effect of the interac-
tion of the experimental area and the inoculation of the
trees solely on the content of available water (two-way
ANOVA, p-value <0.002), having the soil of control
trees higher percentage of available water than that of
the inoculated, in AZL (Table S2). In the case of slime,
pH, the content of soil organic matter, nitrogen, phos-
phorus and potassium, C:N ratio, and salinity, no signif-
icant effect of the interaction of experimental area and
inoculation was found, but just of the experimental area
under study (Table S2).

General properties of sequencing data and
alpha diversity indices

A total of 4,926,626 raw reads were obtained from the
lllumina sequencing platform, which resulted in
1,209,559 high-quality sequences after the trimming
and filtering steps. A total of 2474 different OTUs were
compiled as a result of the bioinformatics processing of
the sequences. As shown in Figure S2, most of the rar-
efaction curves tended to the asymptote when consid-
ering all the sequences of the dataset (non-rarefied)
and individual Good’s coverage values ranged from
97.6% to 99.5% (Table 1). Thus, the samples collected
were considered fairly representative of the original
ecosystems under study.

Data were rarefied to diminish the effect of different
sample sizes over alpha diversity indices, selecting a
total of 13,427 sequences randomly per sample. The
site, but neither the inoculation nor the interaction of the
two factors showed a significant effect on the number
of observed OTUs, and the indices Chao-1, Shannon,
and Inverse of Simpson (two-way ANOVA, p-values
<0.40; Table 1 and Table S3). Thus, the rhizosphere
prokaryotic communities inhabiting control trees were
as rich and diverse as those inoculated with the consor-
tium. It should be marked that high values of Shannon’s
index were recorded in both inoculated and non-
inoculated trees, and the proximity of Pielou’s index to
1.0 revealed the high evenness of all populations
(Table 1). Although prokaryotic communities differed in
terms of Shannon’s diversity among sites, those differ-
ences were practically negligible (Table 1). With
respect to the richness, NPF was the site with the sta-
tistically lowest number of observed and estimated
OTUs (Table 1, Table S3).

Influence of soil physicochemical
parameters on rhizosphere prokaryotic
communities

For the analysis of the influence of edaphic properties
on the structure of rhizosphere prokaryotic communi-
ties, just those parameters that resulted independently
of each other were included in the model of CAP. They
were the C:N ratio, pH, soil salinity and the content of
assimilable K (Table S4). The statistical analysis of
CAP distribution revealed that all four variables had a
significant influence on the structure of prokaryotic
communities, but the former two had a stronger impact
(envfit, R?> 0.66). As depicted in Figure S3, rhizo-
sphere communities of the trees located at NPF (corre-
sponding to those soil samples with the significantly
highest content of assimilable K and ratio C:N and the
most acidic soils) clustered together in the CAP axis
1 and slightly separated from AZL and AZR (higher pH
and with lower contents of assimilable K and ratio CN).
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Analysing the effect of bacterial
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5 g,‘ 258588 28 £ sequences) Ggmmatlmongdetes were significantly
& : 5 23288 % ,§ Z more abundant in AZL than in NPF, both in the case of
2 @ °T 2% Fay inoculated and control trees. NPF was slightly enriched
s § 29 % in Proteobacteria and Actinobacteria compared to non-
O 5 . .
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e} ® o, ?c . . .
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FIGURE 1

Principal coordinate analysis (PCoA) based on

Weighted UniFrac distances of prokaryotic communities inhabiting
the rhizosphere of Quercus pyrenaica inoculated and non-inoculated
trees.
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FIGURE 2 Mean relative abundance of the main bacterial phyla
dwelling in the rhizosphere of Q. pyrenaica trees. |, Inoculated trees;
N.I, non-inoculated (control) trees. The artificial group ‘Other phyla
(<1%)’ represents the sum of all phyla accounting for less than 1% of
the total quality sequences. Stars indicate the existence of significant
differences in the abundance of the corresponding phyla among the
sites under study, according to the results of the ANCOM-BC test.

Notwithstanding, acidobacterial Gp6 was the predomi-
nant classified genus in every study area independently
of the considered treatment, accounting for more than
4% of the total sequences in all cases. As shown in
Table S7, this genus was followed by Bradyrhizobium,
Terrimonas, Gemmatimonas, the acidobacterial Gp4,
Opitutus, Ferruginibacter and Ohtaekwangia, which
represented on average more than 1% of total
sequences in all of the considered experimental sites.
Among these genera, just Bradyrhizobium and Gem-
matimonas showed significant differences among sites
(Table S7). Not a single classified genus showed differ-
ences between control and inoculated trees of AZC,

Treatment [l Control Ml Inoculated

FIGURE 3 Distribution of the genera Arthrobacter and
Bradyrhizobium in the rhizosphere of Q. pyrenaica inoculated and
non-inoculated (control) trees. The log-fold change obtained by the
ANCOM-BC test is represented. Bars in green indicate the cases in
which the corresponding genus was more abundant in non-inoculated
(control) than inoculated trees, whereas bars in pink show those
genera that were more abundant in inoculated trees than in controls.
Values above and below the bars represent the relative abundance of
each genus in each site in control and inoculated trees, respectively.

and just three and five classified genera were differen-
tially abundant in the rhizosphere of inoculated and
control trees in AZL and NPF, respectively. Inoculation
affected the distribution of bacterial genera to a very
small extent, triggering an increase in the abundance of
Arenimonas and Solirubrobacter in NPF (Table S7).
Indeed, non-inoculated rhizosphere soils of AZL and
NPF were depleted in two and three genera, respec-
tively, which were present in the corresponding inocu-
lated samples, although at low levels (Table S7).

We assessed whether the consortium had estab-
lished at the plant roots after the inoculation. Regarding
the presence of those genera to which inoculated
strains belonged, Bradyrhizobium accounted for more
than 1.4% of the sequences in every studied area.
Although its relative abundance depended on the
experimental site, this genus was homogeneously dis-
tributed in the rhizosphere of inoculated and control
trees (ANCOM-BC, p-values = 1; Table S7; Figure 3).
On the other hand, sequences associated with genus
Arthrobacter were almost unrecoverable: no more than
0.06% of the total sequences on average corresponded
to this genus in any of the mountainous areas. Although
Arthrobacter was more abundant in inoculated than in
control trees in NPF (Figure 3), these differences did
not result statistically significant (ANCOM-BC, p-
values = 1). Indeed, the dispersion of the abundance
of genus Arthrobacter was noticeable.

However, the number of genera that showed signifi-
cant differences in their abundance between
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experimental sites, depended on the considered area
and treatment, and it was pretty broad (from 4 to
56 genera differentially abundant were found when
compared control trees of AZL with NPF, and AZL with
AZC, respectively). It should be mentioned that discrete
differences were observed in most of the cases. For
example, the highest and lowest ANCOM-BC log-fold
change values were recorded for the genus Candidatus
Hydrogenedens when compared to non-inoculated
NPF and AZC, and control trees in AZL and NPF,
respectively, and the relative abundance in these sam-
ples was lower than 0.35% (Table S7).

Deciphering the changes of co-occurrence
patterns between prokaryotic communities
of inoculated and non-inoculated trees

Tree inoculation triggered changes in rhizosphere pro-
karyotic communities, as demonstrated by the associa-
tion network analyses. In the case of the AZC site,
networks related to inoculated trees were comprised of
more modules less connected to each other than those
corresponding to control trees (Figures S5 and S6).
The opposite trend was appreciated for AZL: the net-
work of bacterially treated trees was composed of sev-
eral modules with more intramodular links than that of
the control trees (Figures S7 and S8). Indeed, the value
of Centralization of stress centrality (Cs) was signifi-
cantly higher for the inoculated trees than for controls.
No significant differences were measured in terms of
intramodular connections in NPF (Figures S9 and S10).
Significant changes were also found in other topologi-
cal properties between the networks of inoculated and
non-inoculated trees in all the experimental areas. The
network of prokaryotic communities inhabiting the

rhizosphere of the oaks in AZC switched to a less com-
plex network after the inoculation, as revealed by the
decrease in the average degree (avgK) and average
clustering (avgCC) coefficients and the statistically sig-
nificant increase in modularity (M) and geodesic dis-
tance (GD) values (Table 2). It should be pointed out
that although both networks had a modular structure
(M>0.4), the network corresponding to inoculated
trees was comprised of a higher number of modules
and the modularity index was significantly higher than
in the case of control trees. As depicted in Figure 4, the
network corresponding to non-inoculated trees was
characterized by modules composed of a higher num-
ber of nodes when compared with treated trees.

On the contrary, prokaryotic communities dwelling
in the rhizosphere of the inoculated trees located in
AZL (Figure S8) and NPF (Figure S10) experimental
areas were more complex and less modularized than
that of control trees (Figures S7 and S9), although for
some topological properties such as avgCC (AZL) sub-
tle changes were registered (Table 2). Moreover, in
NPF the geodesic distance of the networks correspond-
ing to inoculated and non-inoculated trees was not sig-
nificantly different, and both networks comprised
145 modules. It is worth mentioning that the percentage
of positive interactions among nodes was markedly
higher in the case of inoculated than control trees in
AZL (Table 2; Figure 5). Almost no differences between
treatments were recorded in the case of NPF (66.92%
and 65.08% in control and inoculated trees, respec-
tively; Figure 6). Figure S11 summarizes in a schematic
view the main differences observed for all the co-
occurrence networks.

Bacterial inoculation also triggered changes
regarding the taxonomic affiliation of the networks’
keystone members. It should be mentioned that

TABLE 2 Main global properties of association networks of prokaryotic communities inhabiting the rhizosphere of inoculated and

control oaks.

AZC AZL NPF

Control Inoculated Control Inoculated Control Inoculated
RMT cut-off 0.97 0.96 0.96 0.96 0.94 0.94
Total nodes 566 880 774 763 832 852
Total links 942 1449 824 964 925 1071
R?2 of power-law 0.924 0.950 0.949 0.858 0.92 0.882
PEP (%) 90.87 82.33 65.41 80.61 66.92 65.08
Average degree (avgK) 3.329 3.293 2.129 2.527 2.224 2.514
Average clustering coefficient (avgCC) 0.088* 0.067* 0.074* 0.077* 0.076* 0.113*
Geodesic distance (GD) 4.064* 6.662* 10.941* 8.183* 8.312 8.320
Centralization of stress centrality (Cs) 0.461* 0.257* 0.747* 1.419* 0.308 0.298
Total modules 110 154 146 135 145 145
Modularity (M) 0.660* 0.788* 0.937* 0.834* 0.937* 0.896*

Abbreviation: PEP, percentage of positive links.

*Significant differences among treatments in the corresponding topological properties (Student’s t-test).

35US017 SUOLIWOD A1 8 jedtdde ay Aq peusenob are ssjoie YO ‘8N JO S9N o) Afelg 1 8UIUO A1 UO (SUOTIPUOD-PUR-SWLBI W0 A8 |1’ Ale.q 1 pu1|uo//Sdiy) SUoIPUoD pue swis | 8ul 89S *[£202/20/0T] o Arlqiauliuo A|Im ‘(1P1N) (Joke ele1O) WO eaueD ugeziueBiO 950 Aq 88E9T 0262-29FT/TTTT OT/I0p/W00 A3 |Im ARIq 1 BuUIUO'S fuIno |- IWey/sdiy Wwouy papeojumod ‘0 ‘026229t T



BACTERIAL INOCULATION IN WILD CONDITIONS

Acidobacteria [l Actinobacteria [JllArmatimonadetes

Ml Candidatus Saccharibacteria [l Chioroflexi

M /gnavibacteriae

Firmicutes ~ [lllGemmatimonadetes
M Proteobacteria [llVerrucomicrobia Nitrospirae  [JllParcubacteria
Microgenomates [l BRC1 IUnclassified

Bacteroidetes [l Candidate division WPS-1
Planctomycetes
Thaumarchaeota

FIGURE 4 Associative networks of prokaryotic communities inhabiting the rhizosphere of control (A) and inoculated (B) trees located at
AZC experimental site. Green and red lines represent positive and negative links among nodes, respectively. Triangle-shaped nodes indicate
module hubs, while diamond-shaped represent connector nodes. Modules with less than 10 nodes were removed from the plot.

one OTU belonging to the genus Bradyrhizobium
acted as a module hub in the network correspond-
ing to inoculated trees in AZL, and no other OTUs
ascribed to this genus were found in the control
trees’ network (Figure 5; Table S8). On the other
hand, most of the keystone hubs were not shared
between the networks corresponding to inoculated
and non-inoculated oaks in every studied area,
just the OTU000227 (belonging to genus Reynar-
ella) was classified as a module hub in both net-
works of the AZL site. Meanwhile, networks
calculated for inoculated and control trees were
comprised of some different OTUs ascribed to the
same genera, for instance to the acidobacterial
group Gp6 (AZC), Ohtaekwangia, Spartobacteria
(AZL), and acidobacterial groups Gp4 and GP6 in
NPF (Table S8).

DISCUSSION

Within the field of restoration biotechnology, microbiome-
based approaches are of great expectation due to the
relevant outcomes that have been obtained in nursery
conditions in terms of plant fithess (Barriuso et al., 2008).
To elucidate the ecological effect of afforestation prac-
tices with bacterially-inoculated plantlets, we performed
a reductionist strategy by adapting a process (inoculation
followed by the outplanting) in a pre-existing ecosystem,
as described by Maghnia et al. (2019). We hypothesized
that the bacterial treatment will not entail changes in
the rhizosphere bacterial communities in the long term.
Firstly, we conclude that the working hypothesis
was partly true since the bacterial treatment did not
affect in a significant way the diversity, structure and
composition of rhizosphere prokaryotic communities
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FIGURE 5 Associative networks of prokaryotic communities inhabiting the rhizosphere of control (A) and inoculated (B) trees located at AZL
experimental site. Green and red lines represent positive and negative links among nodes, respectively. Triangle-shaped nodes represent
module hubs. Modules with less than 10 nodes were removed from the plot.

18 months after the outplanting. We observed signifi-
cant differences in alpha or beta diversity between sites
(NPF, AZC and AZL) regardless of the treatments.
Thus, inherent environmental or edaphic properties of
each studied site, their different location (valleys of Rio
Chico and Lanjarodn rivers), specific vegetation of each
area and other uncontrolled factors may have much
more influence on rhizosphere prokaryotic communities
than bacterial inoculation did, as reviewed Philippot
etal. (2013).

Taking into account the scarcity of data on the subject,
it is very difficult to come to a single consensus about the
persistence and effect of inoculation in wild conditions.
While some authors have demonstrated by different strat-
egies that resident bacterial communities changed due to
the application of a bioformulation in field conditions
(Schwieger & Tebbe, 2000; Wang et al., 2018), others
have not detected any alteration of the autochthonous
populations (Chowdhury et al., 2013). In addition to the
lack of long-term effect over diversity and taxonomic com-
position of rhizosphere bacterial populations, we

observed that these populations were rather similar to
those addressed by other authors in two mountainous
areas close to AZL and AZC (Fernandez Gonzélez,
2014; Lasa, Fernandez-Gonzalez, et al., 2019). More-
over, other works have already reported a similar abun-
dance of the genera Bradyrhizobium and Arthrobacter in
the bulk and rhizosphere soil of holm-oak trees located in
a mountainous region in Lanjarén close to AZL
(Fernandez Gonzalez, 2014; Fernandez-Gonzélez
et al, 2017). Taking into account the homogeneity
between control and untreated trees, and the distribution
of both genera in different positions in the Sierra Nevada
National and Natural Park, it is tempting to speculate
about an initial loss of the inoculated consortium, followed
(or accompanied) by the horizontal acquisition of mem-
bers of both genera from the surrounding soil biome from
where both inoculants were isolated; alternatively, an ini-
tial loss till reaching their natural abundance in these soils.
It should be mentioned that there are conflicting research
findings regarding the lifespan of the bioformulations
once inoculated (Araujo et al., 2018; Frey-Klett
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FIGURE 6 Associative networks of prokaryotic communities inhabiting the rhizosphere of control (A) and inoculated (B) trees located at
NPF experimental site. Green and red lines represent positive and negative links among nodes, respectively. Triangle-shaped nodes represent
module hubs. Modules with less than 10 nodes were removed from the plot.

etal., 1997; Galiana et al., 1994; Narozna et al., 2015 and
references therein), which hinders the validation of the
idea of an initial loss and subsequent horizontal acquisi-
tion of the consortium. On the other hand, it is worth
mentioning that most of the previous works that
addressed the lifespan of the bioinoculants in field condi-
tions implemented low-sensitivity techniques such as fin-
gerprinting or culture-dependent methods. Here we used
a next-generation sequencing approach known for its
high resolution and sensitivity, accounting for most of the
prokaryotic diversity. Other more sensitive and specific
techniques such as quantitative PCR (gPCR) would be
needed to estimate the persistence of the consortium in
field conditions.

Although no changes were recorded in bacterial
diversity and taxonomic profiles, inoculation triggered
associative changes in the long term. Bacterial treat-
ment induced an increase in the number of links and
the value of avgK of the networks corresponding to
melojo oaks located in AZL and NPF, which in addition
to a high number of nodes, has been considered as
indicators of complex microbial networks. In turn, com-
plex networks are linked to the promotion of the plant

host’s health and production, and a better adaptation to
biotic and abiotic stresses (Fernandez-Gonzalez
et al., 2020; Tao et al., 2018; Yang et al., 2017). Thus,
the inoculation of melojo oaks in AZL and NPF sites
could have entailed an increase in the hosts’ fitness.
On the other hand, we observed that bacterial inoc-
ulation of melojo oak trees arouse different effects on
rhizosphere prokaryotic communities: while inoculation
supposed a more compartmentalized network in the
AZC site, non-inoculated trees were more prone to
higher modularized networks in AZL and NPF. The
phenomenon of network modularization has been sug-
gested as a strategy to maintain the stability of micro-
bial communities, protecting them from disturbances
(Delmas et al., 2019; Marasco et al., 2018). In addition
to that, the inoculation induced an increase in the pro-
portion of negative interactions solely in the case of
AZC. Other authors have already proposed that nega-
tive interactions also have protective effects against
external disturbances (Hernandez et al., 2021 and ref-
erences therein). The increase in the modularity and
the percentage of negative interactions points out to an
enhancement in the stability of the bacterial community
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of inoculated AZC trees, which could prevent a possible
perturbation from spreading throughout the rest of the
network by confining it to one module (Rybakova
et al., 2017). Bacterial inoculation would have triggered
just the opposite effect in the AZL site.

It is important to stress that network keystones are
taxa that underlie the network structure. In all cases,
the taxonomic affiliation and the number of keystones
varied between inoculated and control trees (Table S8).
Several OTUs belonging to the acidobacterial subgroup
6 (Gp6) were identified as connectors or module hubs
in all networks except that calculated for the inoculated
oaks in AZL, highlighting their potential essential role in
the maintenance of the networks’ stability. Other
authors have already suggested that this acidobacterial
subdivision may represent the keystone taxa in plant-
associated microbial communities (Jiang et al., 2017).
It is important to point out that one of the module hubs
of the network corresponding to the inoculated trees of
AZL belonged to the genus Bradyrhizobium. Although
we cannot guarantee that this OTU is the one we inocu-
lated, its role in structuring the prokaryotic community
of inoculated trees in AZL is thought to be important.
Previous works in other plant hosts suggested that
members of the genus Bradyrhizobium could play an
essential role in excluding plant pathogens, enhancing
plant host’s health, or having a generalist role within the
rhizosphere (Floc’h et al., 2021; Lewin et al., 2021).
Notwithstanding, networks should be interpreted cau-
tiously since significant correlations among nodes do
not necessarily entail microbial interactions, but they
reflect co-existing members that could have similar or
complementary functions or that share ecological pref-
erences (Deng et al., 2012; Freilich et al., 2010; Preto
etal., 2017; Tao et al., 2018).

Bacterial inoculation changed associations among
prokaryotic members without changing the diversity or
taxonomical profiles of overall communities, in none of
the studied areas. The outplanting of treated oaks could
have entailed the rearrangement of taxa associations
(by the enhancement or exclusion of specific members
of resident populations), altering their topological role,
the structure of the networks, and therefore the com-
plexity of prokaryotic populations, as other authors
have already reported (Kong et al., 2019). Thus, it is
very difficult to decipher the effect of the consortium
inoculation over native prokaryotic communities but
also over the trees.

The sign of the changes in associative patterns and
keystone taxa resulted dependent on the experimental
area under study. This variability could be a conse-
quence of the history, environment and characteristics
inherent to each experimental site. While AZL and AZC
were two afforested zones, NPF was a naturalized pine
forest where pine trees could have acted as nurse
plants of the young melojo oak plantlets. On the other
hand, AZC and AZL were more exposed to solar

radiation than NPF due to the absence of tree canopy,
nevertheless, the historical characteristics of the AZL
site included a wildfire in 2005. On the other hand,
Q. pyrenaica is a tree that commonly establishes sym-
biotic ectomycorrhizal (ECM) interactions, which may
vary depending on the type of forest stand (Martin-Pinto
et al., 2021). Indeed, plant-fungal communities harbour
their own microbiota, commonly composed of bacteria
inhibiting on/inside fungal tissues (Bonfante et al.,
2019). ECM interactions are important drivers of bacte-
rial variation in plant microbiomes, so the inoculation
could have affected the ECM fungal community, having
such changes affect the bacterial networks. Thus, the
absence of analyses considering ECM and other fungi
in this work makes it limited. Local differences not mea-
sured in this work could have triggered different asso-
ciative responses to bacterial inoculation, so further
research is needed to address the factors involved in
the rearrangement of the bacterial communities, such
as the putative role of ECM.

Regardless of the effects of bacterial inoculation
over melojo oak trees and their rhizosphere bacterial
communities, here we reported associative changes
which persisted at least 18 months after the outplant-
ing, not detected by diversity and taxonomic-based
analyses. By evaluating microbial networks, it could
be possible to address alterations in prokaryotic com-
munities due to different treatments or conditions that
were imperceptible by performing traditional ana-
lyses. Despite the uncertainty of the effect on the
plants, our results point out the necessity to study
changes in the networks prior to certifying the envi-
ronmental safety of bioformulations, especially when
these products are intended to be applied in pro-
tected natural areas.
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