

Article

Benefits of *Crotalaria juncea* L. as Green Manure in Fertility and Soil Microorganisms on the Peruvian Coast

Gregorio J. Arone ^{1,*}, Roger Ocaña ¹, Arcadio Sánchez ², Pablo J. Villadas ³ and Manuel Fernández-López ³

¹ Facultad de Ingeniería, Universidad Nacional de Barranca (UNAB), Av. Toribio Luzuriaga 376 Urb. La Florida, Barranca 15169, Peru; rocanau182@unab.edu.pe

² Facultad de Ciencias Agrarias, Universidad Nacional de Huancavelica (UNH), Av. Evitamiento Este S/N, Acobamba 09381, Peru; arcadio.sanchez@unh.edu.pe

³ Soil and Plant Microbiology Department, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), 18008 Granada, Spain; pvilladas@eez.csic.es (P.J.V.); manuel.fernandez@eez.csic.es (M.F.-L.)

* Correspondence: garone@unab.edu.pe; Tel.: +51-996553080

Abstract: The soils of the Barranca valley are among the best soils in Peru, but with so many years of application of agrochemicals and other agricultural practices, they are losing their productive capacity. Consequently, it was suggested to assess the impact of *Crotalaria juncea* L. as a green manure on soil fertility and the populations of bacteria and fungi present in the soil. *Crotalaria* was cultivated for 75 days and incorporated as green manure. After 90 days, the presence of bacteria and fungi was evaluated. Metabarcoding was employed, and the 16S rRNA and ITS2 amplicons were sequenced using the Illumina MiSeq platform. The sequences were processed using various bioinformatics tools. The results indicate that soils have a high diversity of bacteria and fungi. Likewise, in plots where the presence and action of natural biocontrol is suppressed (C0 and P0), pathogenic fungi increase their population in the fallow period (C1), while in P1, the addition of *Crotalaria* as a green manure promotes an increase in the population of bacteria and fungi, and at the same time it suppresses pathogenic fungi. The genera (bacterial and/or fungal) that increase due to the effect of *Crotalaria* are beneficial because they are involved as degraders of organic matter, promotion of plant growth and biological control of pathogens. *Crotalaria* is an alternative to improve soil fertility, increase the beneficial bacterial population, and reduce pathogenic fungi.

Citation: Arone, G.J.; Ocaña, R.; Sánchez, A.; Villadas, P.J.; Fernández-López, M. Benefits of *Crotalaria juncea* L. as Green Manure in Fertility and Soil Microorganisms on the Peruvian Coast. *Microorganisms* **2024**, *12*, 2241. <https://doi.org/10.3390/microorganisms12112241>

Academic Editor: Huixin Li

Received: 28 July 2024

Revised: 19 August 2024

Accepted: 22 August 2024

Published: 6 November 2024

Copyright: © 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (<https://creativecommons.org/licenses/by/4.0/>).

1. Introduction

Zero hunger is one of the sustainable development goals, and achieving this objective requires the presence of healthy soils, which we currently lack, because most of our soils where we produce our food are in the process of degradation [1,2]. In addition, the loss of the productive capacity of the soils seems easy to restore through the application of agrochemicals, but it seems that the remedy is more harmful, because applications of these inputs for decades have been disturbing the environment and life in the soil, etc., and has made families more dependent on these inputs, especially for family farming.

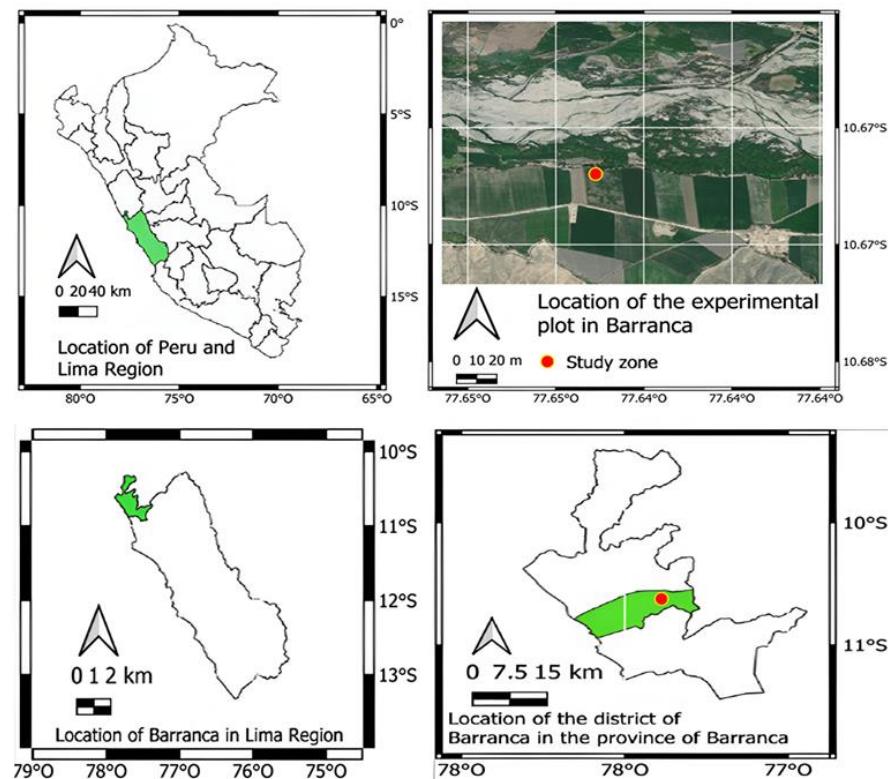
On the other hand, the soils of the Peruvian coast, although mostly alluvial, are poor from their genesis in their organic matter content and therefore in N. The soils of the Barranca valley are no exception, but in these conditions, various fruit trees, hard yellow corn, potatoes, paprika, strawberries, and other crops are grown, mainly using high doses of chemical fertilization, frequent pesticide applications, and intensive use of agricultural mechanization [3]. Over the years, dependence on and addiction to the use of agrochemicals show their effects in various ways in crop fields, such as compaction, salinization, reduction in the productive capacity of the soil [4,5], reduction in the population of soil macro-, meso-, and microorganisms, eutrophication of water, resistance, resurgence, and appearance of

new pests and diseases, in addition to the contamination of the environment, soil, water, and even the crops themselves [6,7]. This reality is increasingly accentuated because there is little replacement of organic sources to the crop fields, because farmers in the valley have established a bad practice, the burning of stubble, the effects of which are widely documented [6,8–10]. In this way, farmers have generated a vicious circle to produce crops and obtain high yields in degraded and low-fertility soils, where they must necessarily apply higher and higher doses of fertilizer and pesticides. These practices of high fertilization have been generating changes in the characteristics of the soil, particularly in microbial populations, as well as changes in the content of organic matter, N, etc. [11–13].

With the urgent task of restoring the productive health of degraded or low-fertility soils, various experiments indicate that legumes used as cover or as green manure are the most accessible and low-cost allies [14,15]. However, it remains to be elucidated how much the incorporation of green manures such as *Crotalaria* (*Crotalaria* sp.) influences the population of bacteria and fungi that inhabit the soil, mainly using the independent method of cell culture, which makes it possible to quantify its presence and function through metabarcoding, massive sequencing, and bioinformatics that help to evaluate and make visible the contribution of these hidden inhabitants in the healthy production of crops [16].

The use of green manure is a practice known in the agricultural community since the time of our ancestors, as reported by the results of studies developed on this subject, which highlight the role of green manures in improving organic carbon content, porosity, the soil's carbon-to-nitrogen (C:N) ratio, its structure, and soil quality [8,17–19]. In addition, legumes used as green manure can provide nitrogen through biological fixation, capture and sequester carbon, and provide a favorable environment for microbial biodiversity, with subsequent mineralization of plant nutrients [20,21]. Likewise, the addition of legume residues is advantageous not only for agricultural productivity but also for the sequestration of carbon from atmospheric CO₂ [22–24]. Similarly, when legumes are utilized as green manure and mixed into the soil, their remains enhance the availability of nitrogen, phosphorus, potassium, and micronutrients for rotation cultivation due to the decrease in soil pH caused by the CO₂ produced during the decomposition process [24–27].

Crotalaria (*Crotalaria juncea* L.) is employed as a cover crop for green manure, a fiber crop, fodder, as a nematicide, etc. It is also a crop that fixes atmospheric nitrogen through symbiosis and in turn provides abundant organic matter, which helps enhance the chemical, physical, and biological aspects of the soil [28–33].


The use of *Crotalaria* as a green manure in Barranca is a viable low-cost alternative; it adapts to its summer climate, presents rapid and exuberant growth, does not require additional fertilization or pest and disease control, and it also contributes to supply nutrients to the soil and promotes populations of bacteria and fungi that contribute to soil health. It also reduces the growth of fungi pathogenic to crops.

With this background, we aimed to know the effect of the use of *Crotalaria*, as green manure, on the microbial communities in order to try to recover the soil fertility and to control the presence of pathogens which impaired the crops yield.

2. Materials and Methods

2.1. Field Site and Sampling

The experiment was carried out between December 2022 and August 2023 in the village of Las Huertas, district of Barranca, Lima, Peru, located at coordinates 10°41'18.7" South Latitude and 77°42'39.3" West Longitude at 277 m a.s.l., which according to Holdridge corresponds to the life zone of Subtropical Desiccated Desert (dd-S) [34] (Figure 1).

Figure 1. Location of the experimental plot (red dot) in La Huerta, Barranca, Lima, Peru.

An intensively cultivated plot was selected that uses pesticides and synthetic fertilizers for crop production. In addition, the owner practices the burning of agricultural stubble in the same plot, which has affected the productive capacity of the soil. An experiment of four treatments was installed in this plot: C0, P0, C1, and P1, as indicated in Table 1. During the experiment, two soil samples were taken at different times. The first sampling was carried out before the crotalaria (time zero: C0 and P0) were planted, while the second was carried out 90 days after its incorporation (time one: C1 and P1).

Table 1. Treatments under study.

Time Zero	Time 1	Plots with and without Crotalaria Sowing for Use as Green Manure
C0: Initial control soil evaluated before sowing of the plot without cultivation.	C1: Soil that has remained untilled since the time of C0 and evaluated at the same time as P1.	
P0: Initial control soil for the plot with Crotalaria	P1: Plot where the Crotalaria is sown and incorporated 75 days after its sowing and evaluated 90 days after its incorporation.	

Soil samples were collected from a depth of 0 to 20 cm, with 12 replicates gathered for each treatment. All samples were placed in sterile Falcon tubes with lids, stored in a

refrigerator, and then transported to the Genomics and Molecular Biology laboratory at the National University of Barranca, where they were kept at -80°C until DNA extraction [35].

2.2. Analysis of the Leaf and Root Tissue of the *Crotalaria*

Crotalaria is a valuable legume as a green manure due to its multiple agronomic benefits. It fixes atmospheric nitrogen, enriching the soil and reducing the need for fertilizers. It controls phytopathogenic nematodes and certain harmful fungi, improving soil health. Its root system improves soil structure, prevents erosion, and increases the retention of water and organic matter. In addition, it is ideal for crop rotations, interrupting pest and disease cycles [36–38]. *Crotalaria*, therefore, is essential for sustainable agricultural practices, improving the productivity and health of the agricultural ecosystem. In this experiment, the *Crotalaria* crop was not fertilized; it grew with natural soil fertility and efficient biological nitrogen fixation [39,40].

The leaf and root tissues of the *Crotalaria* were sampled one day before the incorporation of the *Crotalaria* as green manure, which was sent in four replicates for foliar and root analysis to the Laboratory of Analysis of Soils, Plants, Water and Fertilizers (LASPAF) of the National Agrarian University La Molina (UNALM), Lima, Peru [41,42].

2.3. Soil Biogeochemical Properties

The soils of Barranca have been formed from sediments of alluvial origin, that is, with materials transported and deposited by water, especially by rivers and streams, so according to the current classification of the World Reference Base for Soil Resources (WRB) they correspond to Fluvisol soils [43]. These soils are the best soils in the valley, due to their rich mineral composition and the constant renewal of nutrients through the sediments that the rivers bring; however, for many decades it has been receiving overdoses of synthetic fertilizers and pesticides, which has been degrading the soil.

According to Bazán [44], soil samples were taken for characterization analysis. Four replicates were taken per treatment and sent for analysis to the Laboratory for Analysis of Soils, Plants, Water and Fertilizers (LASPAF) of the National Agrarian University La Molina (UNALM), Lima, Peru, where the following parameters were determined: (i) Texture (hydrometer method), (ii) pH (potentiometer, 1:1 water/soil), (iii) electrical conductivity (conductometer, aqueous extract 1:1 soil/water); (iv) free carbonates (gasovolumetric), (v) soil organic content (Walkley and Black), (vi) P (modified Olsen) and available K (ammonium acetate extraction, pH 7), (vii) CEC (ammonia acetate, pH 7), and (viii) exchangeable cations (atomic absorption). The analyses were performed according to the LASPAF protocol [45].

2.4. DNA Extraction and Illumina MiSeq Sequencing

250 mg of soil was used to extract soil DNA from 12 replicates per treatment, using the PowerSoil® extraction kit (MO Bio labs, Carlsbad, CA, USA) and following the procedure described by the manufacturer. The extraction was carried out aseptically and the extracted DNA was stored at -20°C . The concentration was quantified using the Qubit® 3.0 fluorometer (Invitrogen, Life Technologies, Van Allen Way, Carlsbad, CA, USA) [35]. Once the quality and quantity of DNA had been verified, each sample was sequenced with the Illumina MiSeq platform at the Genomics Service of the Institute of Parasitology and Biomedicine “López Neyra” (CSIC; Granada, Spain) [46], following Illumina’s recommended protocols for a 2×275 strategy. The prokaryotic libraries were constructed amplifying the hypervariable regions V3-V4 of the 16S rRNA gene using primers Pro341F (5'-CCTACGGGNBGCASCAG-3') and Pro805R (5'-GACTACNVGGTATCTAATCC-3') [47]. Fungal libraries were constructed amplifying the ITS2 region using primers ITS4 (5'-TCCTCCGCTTATTGATATGC-3') [48] and fITS7 (5'-GTGARTCATCGAATCTTG-3') [49].

Three samples of the mock community ZymoBIOMICS™ Microbial Community DNA Standard, (ZYMO Research; Irvine, CA, USA) were included in each sequencing run as a quality sequencing control.

2.5. Processing of 16S/ITS Sequences and Taxonomic Attribution

Briefly, data from metabarcoding studies were processed using R version 4.4.3 [50,51]. Amplicon Sequence Variants (ASVs) were inferred using DADA2 pipeline [52]. Trimming for prokaryotic libraries was performed with Figaro (<https://github.com/Zymo-Research/figaro#figaro>, accessed on 24 May 2024). For trimming, the function filterAndTrim was used. Sequences less than 50 nucleotides in length or with ambiguities were removed. Maximum Expected Errors (maxEE) for forward and reverse reads was set to 2 and 3 for prokaryotic and 3 and 4 for fungal datasets. For 16S rRNA reads, the length of the forward reads was limited to 269 nucleotides and the reverse reads to 215. Primers were removed using the Cutadapt tool [53]. After merging sequences and removing chimeras in the prokaryotic dataset, reads smaller than 401 and larger than 429 nucleotides were discarded. Finally, the classification of bacterial and fungal ASVs was achieved using the Silva 138.1 database [54] and UNITE v.7.2 dynamic database [55,56], respectively. ASVs that were classified as mitochondria, chloroplast, and unknown sequences and eukaryotic ASVs not classified as fungi at the kingdom level were removed.

2.6. Statistical Data Processing

In the Past4.17.exe program (PAleontological STatistics), a widely used free software for statistical analysis and ecological diversity in paleontology and biology [57–59], once a DataFrame was obtained, rarefaction curves were examined to understand how sampling depth affects microbial diversity calculations, and alpha and beta diversity were also determined. This software was also used for multivariate principal coordinate analysis (PCoA) with the Bray–Curtis dissimilarity index to visualize the differences in community composition between groups at 95% ellipses, for the populations of bacteria and fungi, and for the behavior of the studied soil parameters using characterization analysis. On the other hand, the various statistical comparisons of the diversity indices, the abundance of genera and phyla of bacteria and fungi, as well as the parameters evaluated in the soil characterization analysis, were analyzed using R version 4.4.3, in RStudio version 2024.04.2+764, and the library agricolae [60] at an alpha = 0.05 [50]. Finally, the construction of the Venn diagrams was carried out using Venny 2.1, an interactive online access tool. A list of genera for each soil under study (C0, P0, C1 and P1) was used, which allowed visualizing the shared and exclusive genera for each type of soil [46].

3. Results

3.1. Nutrient Supply of *Crotalaria juncea* L. as Green Manure and Changes in Soil Fertility

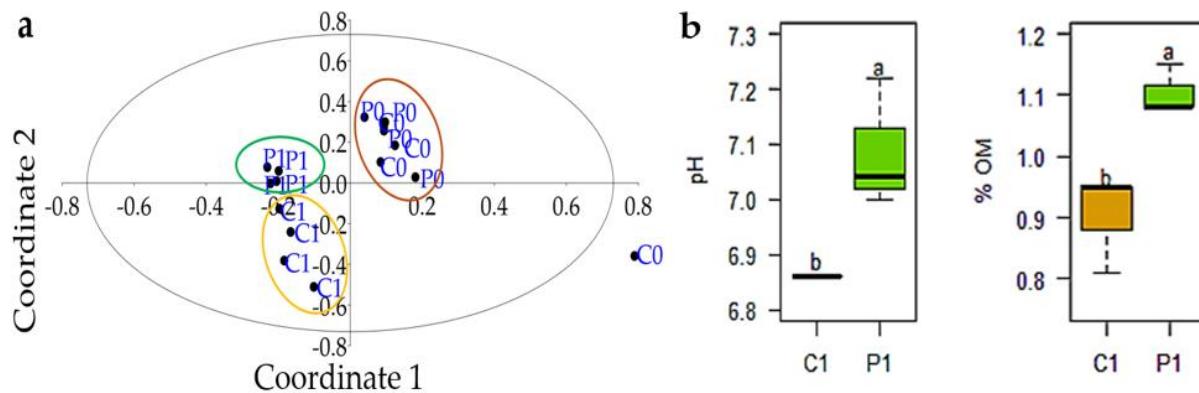
The leaf biomass of *Crotalaria* is notable for being a plentiful source of nutrients, with relatively high concentrations of nitrogen (2.54%), phosphorus (0.28%), potassium (1.33%), calcium (1.70%), magnesium (0.28%), sulfur (0.23%), zinc (21.13 ppm), copper (8.88 ppm), manganese (85.20 ppm), iron (152.33 ppm), and boron (47.91 ppm). Likewise, the root biomass of *Crotalaria* has considerable nutrient content, although at lower levels compared to leaf biomass. The main nutrients present in the root biomass include nitrogen (1.09%), phosphorus (0.22%), potassium (1.09%), calcium (0.46%), magnesium (0.21%), sulfur (0.22%), zinc (40.38 ppm), copper (13.25 ppm), manganese (60.88 ppm), iron (1292.50 ppm), and boron (16.83 ppm). These values show that *Crotalaria* used as green manure has the potential to be a significant source of nutrients to help restore soil fertility (Table 2).

The soils evaluated are soils of neutral pH, do not present salt problems, are poor in organic matter, and due to the application of phosphate and potassium fertilizers for decades the soil has a high content of P and K in the soil. Additionally, the soils exhibit low cation exchange capacity (Table 3).

Table 2. Nutrient content of *Crotalaria juncea* L. as green manure at 75 days after its emergence in La Huerta, Barranca, Lima.

Element	Crotalaria Leaf Biomass (LB)			Crotalaria Root Biomass (RB)			Total Input (LB + RB) (kg ha ⁻¹)
	Nutrient Content (g kg ⁻¹)	Dry Matter (t ha ⁻¹)	Nutrient Supply (kg ha ⁻¹)	Nutrient Content (g kg ⁻¹)	Dry Matter (t ha ⁻¹)	Nutrient Supply (kg ha ⁻¹)	
N	25.40	8.767	222.70	10.90	0.968	10.55	233.23
P	2.80	8.767	24.50	2.20	0.968	2.13	26.68
K	13.30	8.767	116.60	10.90	0.968	10.55	127.15
Ca	17.00	8.767	149.00	4.60	0.968	4.45	153.49
Mg	2.80	8.767	24.50	2.10	0.968	2.03	26.58
S	2.30	8.767	20.20	2.20	0.968	2.13	22.29
Na	0.100	8.767	0.90	1.20	0.968	1.16	2.04
Zn	0.021	8.767	0.20	0.040	0.968	0.04	0.22
Cu	0.009	8.767	0.10	0.013	0.968	0.01	0.09
Mn	0.085	8.767	0.70	0.061	0.968	0.06	0.80
Fe	0.152	8.767	1.30	1.293	0.968	1.25	2.58
B *	0.048	8.767	0.40	0.017	0.968	0.02	0.44

* Macro- and micronutrients are reported in their elemental form.


Table 3. Soil characterization analysis.

Treatment	pH	C.E	OM	P	K	CEC	Ca ⁺²	Mg ⁺²	K ⁺¹	Na ⁺¹	Sum of Bases
		(dS/m)	(g kg ⁻¹)	(mg kg ⁻¹)			(mEq/100 g soil)				
C0	6.91	0.52	9.8	34.11	328.25	11.00	8.15	1.78	0.64	0.18	10.75
P0	7.09	0.65	10.7	31.54	268.25	11.04	8.54	1.88	0.56	0.07	11.04
C1 *	6.86 ^b	1.12 ^a	9 ^b	32.25 ^a	267.67 ^a	10.24 ^a	7.43 ^a	1.77 ^a	0.57 ^a	0.14 ^a	9.91
P1	7.09 ^a	0.99 ^a	11 ^a	32.16 ^a	269.00 ^a	10.83 ^a	8.25 ^a	1.93 ^a	0.58 ^a	0.05 ^a	10.81

* In the table provided, the significant differences between the C1 and P1 treatments are indicated by the letters "a" and "b" next to the values in the corresponding columns, where the means that do not share a letter are significantly different.

The values of the parameters of the soil characterization analysis in C0 and P0, carried out at the beginning of the experiment, are presented in Table 3. On the other hand, C1 and P1 were evaluated 90 days after the incorporation of the green manure. The results of C1 and P1 were compared with each other using a *t*-test ($\alpha = 0.05$). The soil that received the incorporation of the leaf and root biomass of the *Crotalaria* as green manure, 75 days after its emergence (P1), did not present statistical differences for some parameters such as P, K, Ca, Mg, Na, EC, and CEC, with respect to the plot where it was not incorporated (C1). However, there were statistical differences for pH and soil organic matter (OM) content (Table 3 and Figure 2).

Likewise, using the values of the characterization analysis of C0, C1, P0, and P1, a multivariate analysis of principal coordinates (PCoA) was performed, which has made it possible to visualize the variations in the composition of the soil. In this multivariate analysis, P1, which represents the plot P0 after the incorporation of *Crotalaria juncea* as green manure, shows a lower deviation of P0 in the PCoA space. This suggests that *Crotalaria juncea* has had a conservative effect on soil characteristics, keeping it closer to its initial state. Instead, the fact that C1 has shifted significantly from C0 in coordinate space suggests that there is a considerable change in soil characteristics when green manure is not applied. This distancing is possibly due to the processes of natural recovery of the soil, which involves a series of biological, chemical, and physical mechanisms that are natural over time (Figure 2).

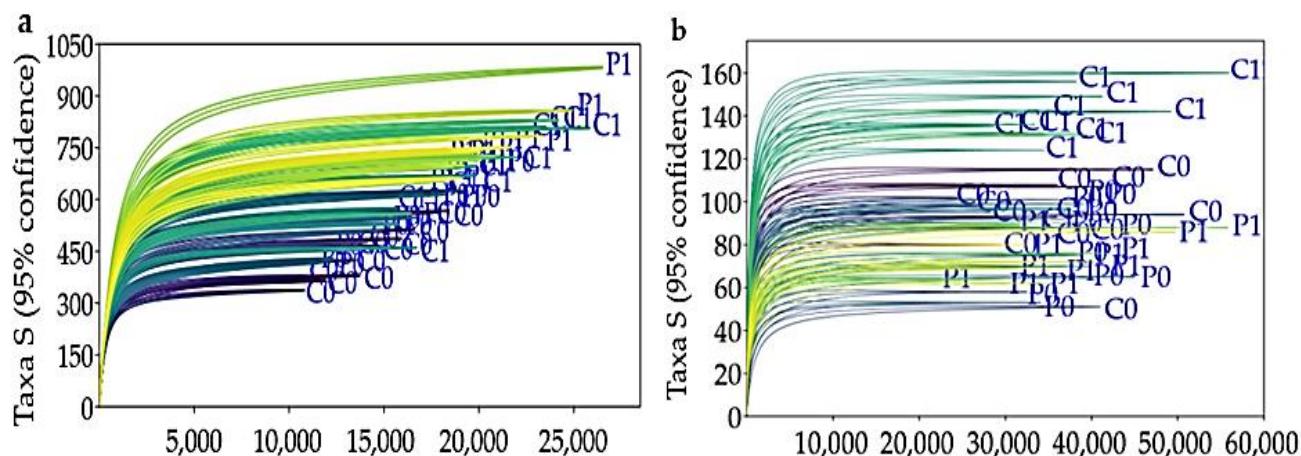
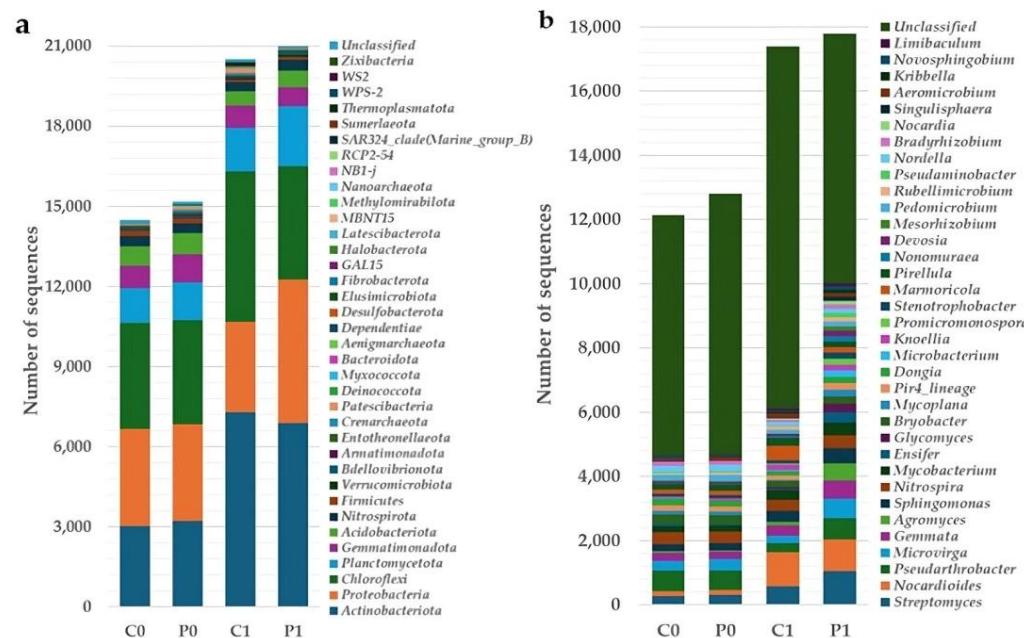
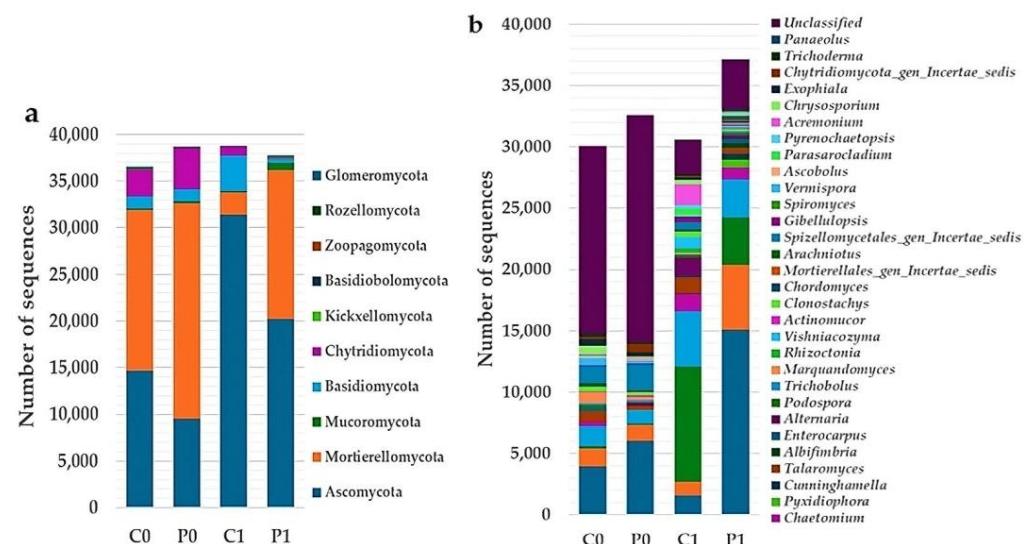


Figure 2. (a) Multivariate analysis of principal coordinates (PCoA) using the values of the characterization analysis of C0, C1, P0, and P1. (b) Soil pH and organic matter content. Significant differences between treatments for pH and soil organic matter are indicated by the letters “a” and “b”.

3.2. Sequencing and Reads Quality Control

In total, 48 input libraries were subjected to ITS2 sequencing, resulting in 4,352,846 raw reads. In addition, 16S rRNA amplicon sequencing of the same number of input libraries yielded a total of 3,964,442 raw reads. The rarefaction curves based on the comparison of ASV abundance, and the number of sequences analyzed tended to reach a saturation plateau, demonstrating that the analyses were representative of the communities under investigation.


The rarefaction curves displayed in the figures illustrate the correlation between the number of sequences and the number of taxa (S) for bacteria (a) and fungi (b) under different soil conditions. Likewise, most of the curves reach a plateau, indicating that most of the bacterial and fungal diversity present in the evaluated soils has been captured (Figure 3).


Figure 3. Rarefaction curves of bacteria (a) and fungi (b) of soils evaluated.

3.3. Diversity of Bacteria and Fungi

ASVs from 16S rRNA and ITS2 were classified using a 99% sequence similarity threshold in comparison to the Silva 138.1 database and the UNITE database, respectively. Figures 4 and 5 show a graphic of taxonomic compositions for the four groups evaluated. The taxonomic composition shows that the group of bacteria is dominated by the phyla Actinobacteriota, Proteobacteria, and Chloroflexi, and fungal groups by the phyla Ascomycota and Mortierellomycota.

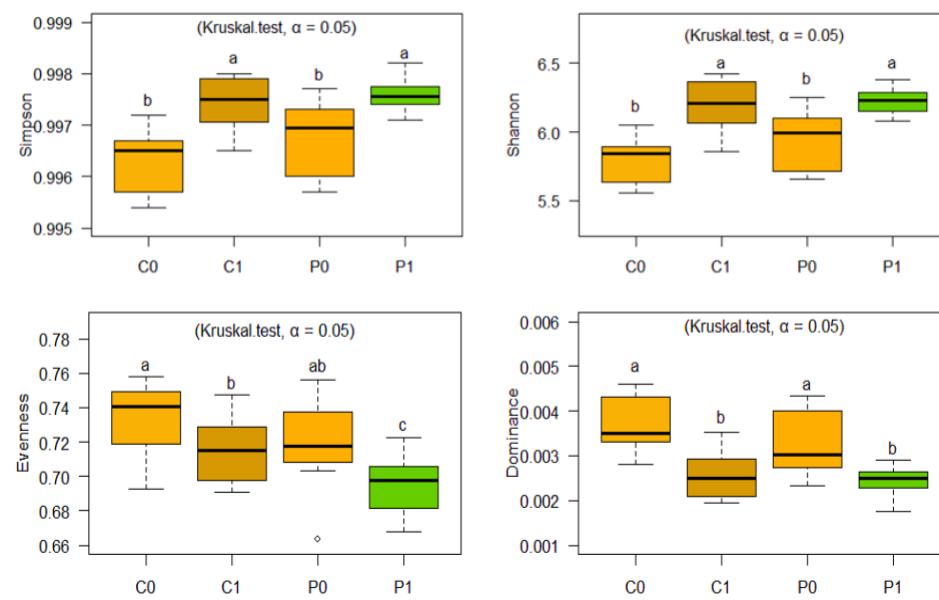
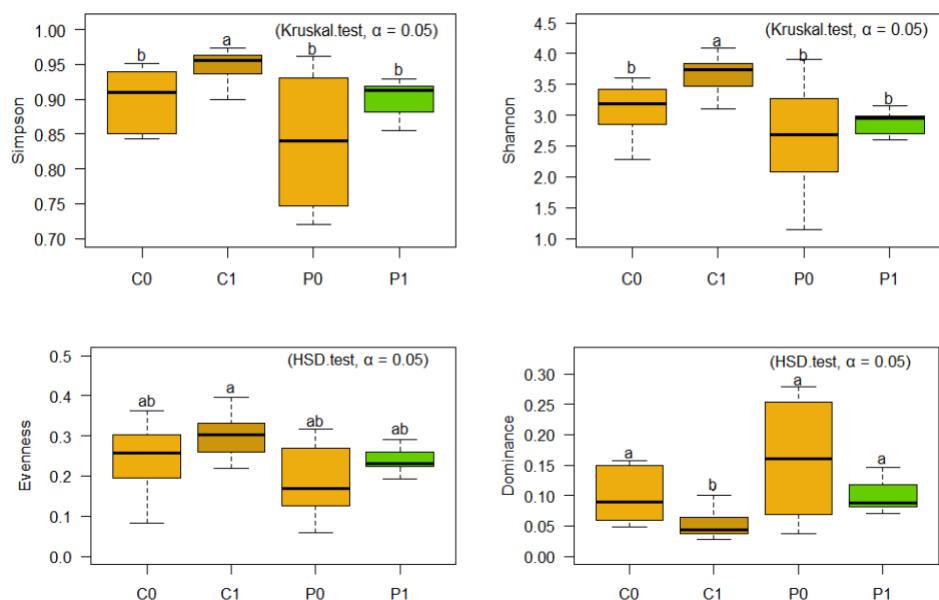
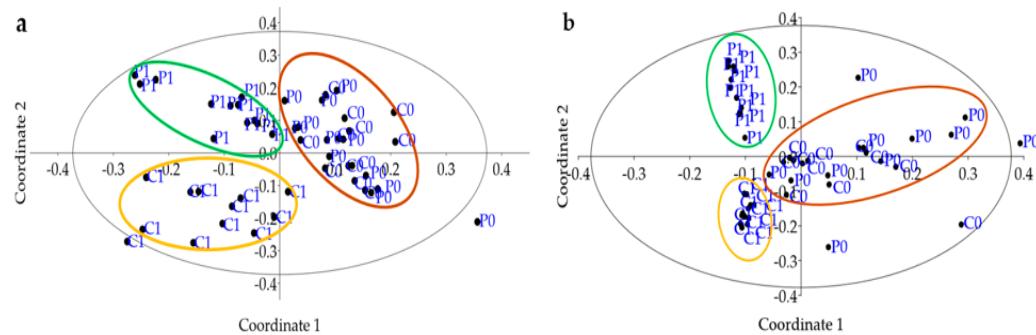

Figure 4. Composition of bacterial communities by phylum (a) and genus (b) in soil C0, P0, C1, and P1 expressed as absolute number of sequences.

Figure 5. Composition of fungal communities by phylum (a) and genus (b) in soil C0, P0, C1, and P1 expressed as absolute number of sequences.


3.4. The Alpha and β -Diversity

C1 and P1 soils have a higher microbial diversity according to both indices (Simpson and Shannon) compared to C0 and P0 soils. Likewise, soils C1 and P1 do not present statistical differences, suggesting that the treatments applied in C1 (natural restoration) and P1 (microbial population promoted by green manure) have promoted greater equity and richness of bacterial species, but with a diverse profile (Figures 4 and 6). Likewise, the application of green manure seems to have impacted the structure of the community, reducing uniformity and dominance in P1, by influencing some bacterial genera (Figure 6).

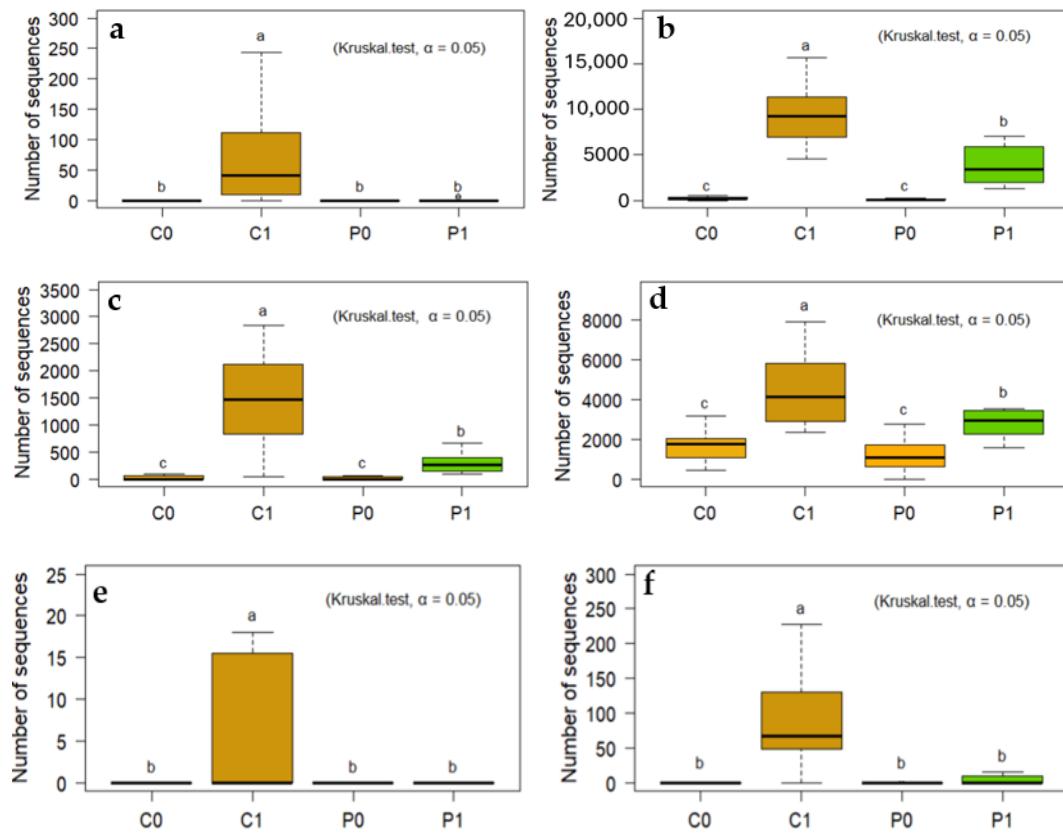

Figure 6. Simpson's Index, Shannon, Dominance, and Evenness of Soil Bacteria. The letters "a", "ab", "b", "c" indicate significant differences between treatments. Same-letter treatments are not significantly different from one another. On the other hand, intermediate combinations such as "ab", show that a treatment shares similarities with both groups.

On the other hand, for Fungi, the C1 soil reached the highest levels for the Simpson, Shannon, and Evenness indices, while P1 has behavior similar to C0 and P0. According to the values achieved in the Shannon index, fungi have less diversity than the bacterial population. On the other hand, according to the Simpson index, C1 has a high value, suggesting that one or a few species are much more abundant. In this regard, C1 has 30,584 sequences, of which 13,907 sequences, representing 45.47%, correspond to the sum of *Cladosporium* (9384 sequences) and *Fusarium* (4523 sequences) sequences (Figures 5 and 7).

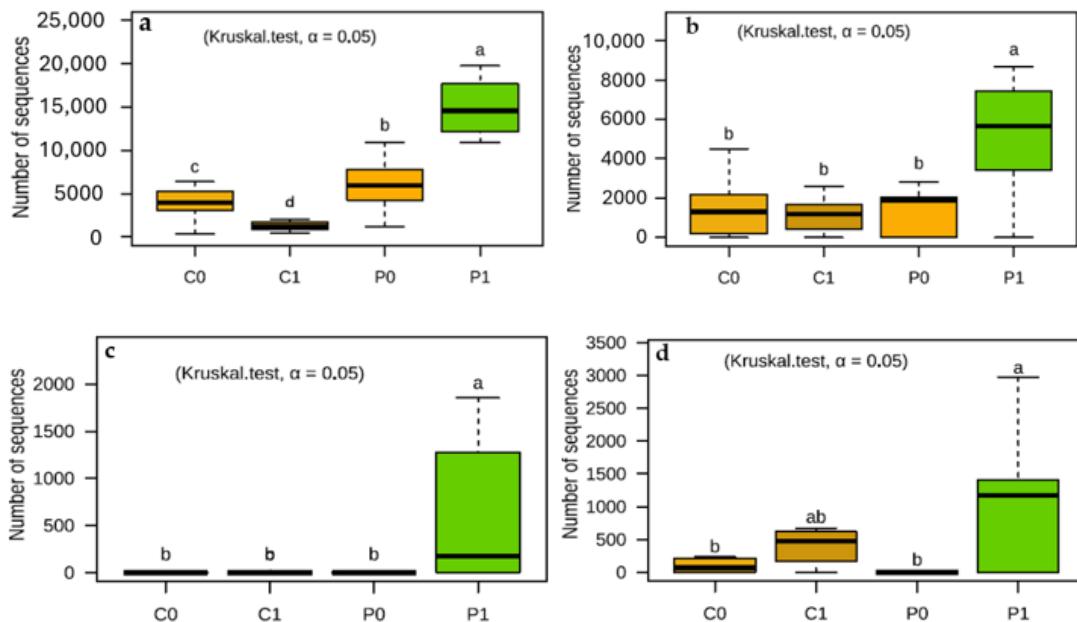
Figure 7. Simpson's Index, Shannon, Dominance, and Evenness of Soil Fungi. The letters "a", "ab", "b", indicate significant differences between treatments. Same-letter treatments are not significantly different from one another. On the other hand, intermediate combinations such as "ab", show that a treatment shares similarities with both groups.

Figure 8 presents two principal component analysis (PCoA) graphs, which visualize the grouping of different treatments (P0, P1, C0, C1) based on the composition of the soil microbial community. In both graphs, the P1 and C1 treatments are grouped into different clusters, which indicates that these treatments have a significant and differentiating effect on the population of bacteria and fungi present in the soil. This finding suggests that both green manure treatment (P1) and soil resting period (C1) affect the soil microbial community differently.

Figure 8. PCoA of soil bacteria (a) and fungi (b) promoted by green manure in Barranca.


On the other hand, P0 and C0 treatments are grouped in a separate cluster, showing similar characteristics and less differentiation compared to P1 and C1. This suggests that the soils of these treatments have a more homogeneous microbial composition or less influenced by the specific factors evaluated in P1 and C1. In summary, the incorporation of green manure (P1) and the soil rest period (C1) distinctively influence microbial diversity, clearly differentiating between P0 and C0 (Figure 8).

3.5. Incorporation of *Crotalaria* as Green Manure Restricts Some Pathogenic Fungi in Soil


Since the advent of the green revolution, the soils of the valleys of the Peruvian coast have been cultivated every agricultural season using mainly synthetic fertilizers and pesticides. Throughout these years, the continuous application of various products for the control of weeds, insects, nematodes, and fungi has reduced the beneficial biota of the soil. Thus, in soil without biocontrol, pathogenic fungi quickly recover their population. On the other hand, it is appreciated that the introduction of *Crotalaria* as a green manure acts as a suppressant for various plant pathogenic fungi, among them *Curvularia*, *Cladosporium*, *Alternaria*, *Aspergillus*, *Fusarium*, *Stemphylium*, and *Lasiodiplodia*. These genera include species that are important pathogens in crops, causing diseases such as wilt, root rot, and leaf spots, and leading to significant yield loss in crops in the region (Figure 9). Thus, the introduction of *Crotalaria* as a green manure has a positive effect by restricting certain pathogenic fungi in the soil. This is because *Crotalaria juncea* and other species of the genus *Crotalaria* produce bioactive compounds that may have nematicidal and fungicidal properties, which contribute to reducing the incidence of pathogens in the soil and improve soil health.

3.6. The Incorporation of *Crotalaria* as Green Manure Promotes Beneficial Soil Fungi

Utilizing *Crotalaria* as green manure not only enhances soil fertility but also fosters a conducive environment for the growth of beneficial fungi. The clear presence of *Mortierella*, *Humicola*, *Pyxidiophora*, and *Chaetomium* in the soil promoted by green manure is important, because these genera of fungi play crucial roles in soil health and productivity, whether through the decomposition of organic matter, the promotion of plant growth, or the biological control of pathogens. Integrating practices that encourage the presence and activity of these fungi can result in more sustainable and productive agricultural systems. Therefore, incorporating *Crotalaria* is an effective strategy to promote microbial biodiversity and improve soil resilience to pathogens and adverse conditions (Figure 10).

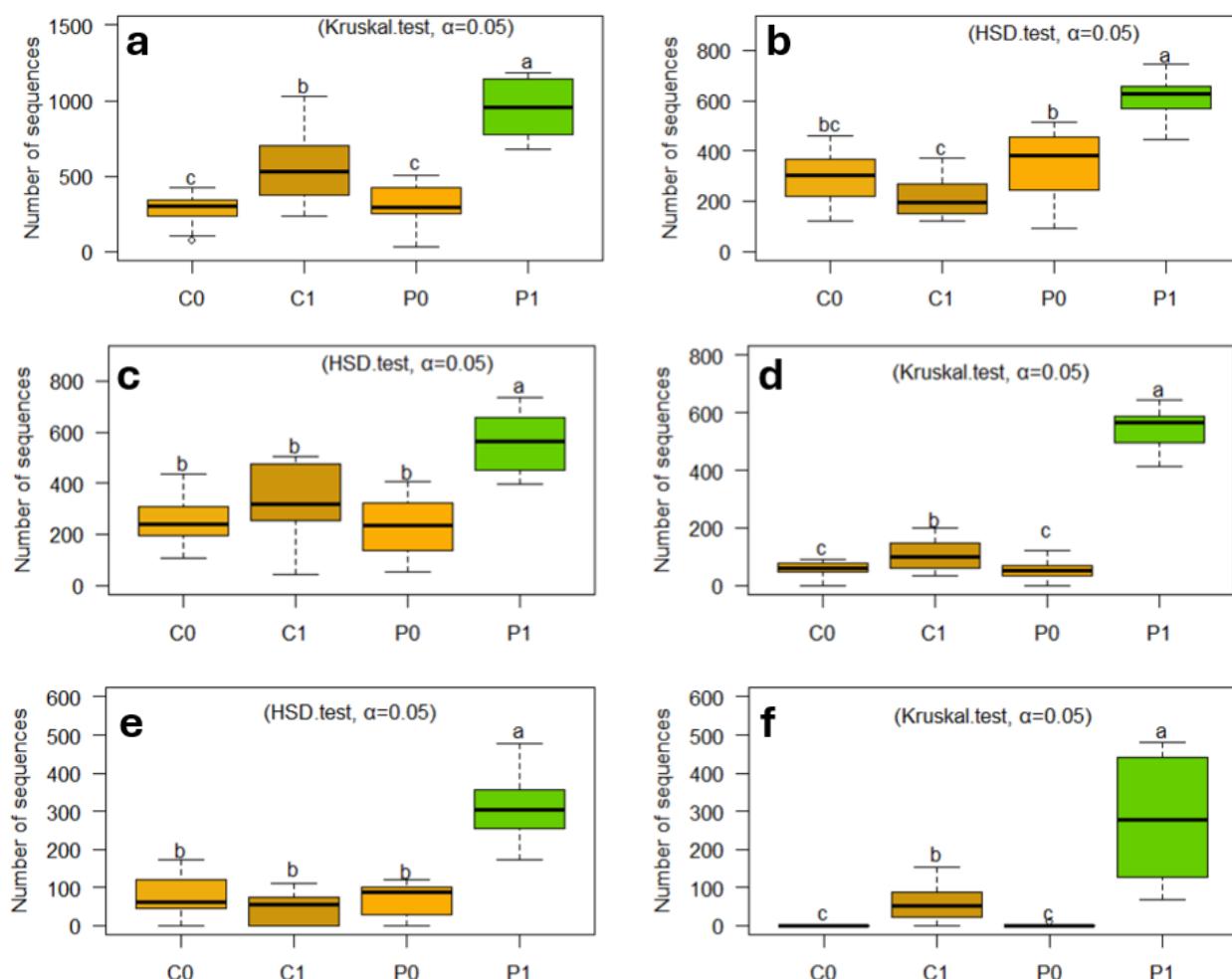

Figure 9. Crotalaria as a green manure acts as a suppressant of pathogenic fungi of (a) *Curvularia*, (b) *Cladosporium*, (c) *Alternaria*, (d) *Fusarium*, (e) *Lasidioplodia*, and (f) *Stemphylium*. The letters “a”, “b”, “c”, indicate significant differences between treatments. Same-letter treatments are not significantly different from one another.

Figure 10. The use of Crotalaria as green manure promotes a population of beneficial fungi such as (a) *Mortierella*, (b) *Humicola*, (c) *Pyxidiophora*, and (d) *Chaetomium*. The letters “a”, “ab”, “b”, “c”, “d” indicate significant differences between treatments. Same-letter treatments are not significantly different from one another. On the other hand, intermediate combinations such as “ab”, show that a treatment shares similarities with both groups.

3.7. Incorporation of *Crotalaria* as a Green Manure Promotes Beneficial Soil Bacteria

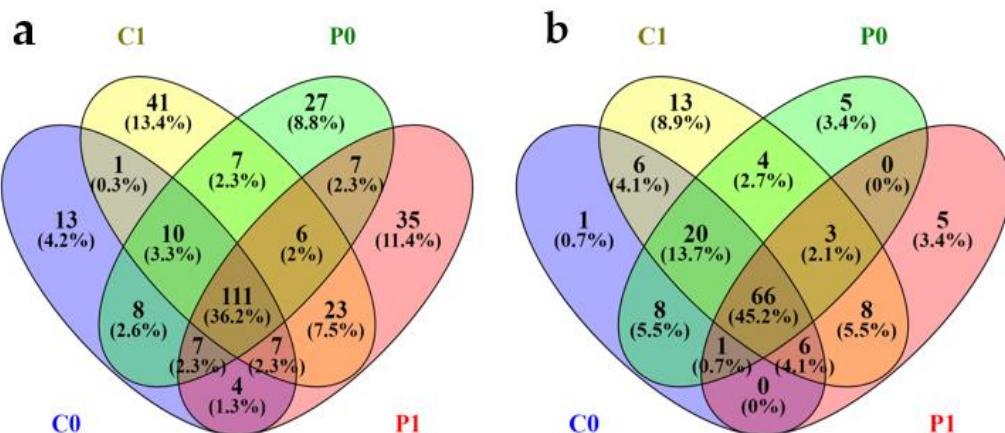

Although the soils show high content of P and K, and possibly also of N due to overfertilization with this element, they are poor in the most important constituent, in organic matter, so the application of any organic source will always motivate the multiplication of soil organisms, as in this experiment, the incorporation of *Crotalaria* as green manure promotes various bacterial genera, among them *Streptomyces*, *Microvirga*, *Gemmata*, *Agromyces*, *Ensifer*, *Glycomyces*, *Mycoplana*, *Microbacterium*, *Promicromonospora*, *Stenotrophobacter*, *Nonomuraea*, *Devsia*, *Kribbella*, *Limibaculum*, *Singulisphaera*, *Pseudaminobacter*, *Mesorhizobium*, *Nocardia*, and *Sphingomonas*, and they present statistical differences (Figure 11). These genera have various activities; for example, *Streptomyces* is known to produce natural antibiotics, controlling soil pathogens. *Microvirga*, *Ensifer*, and *Mesorhizobium* act as symbionts of legumes and fix nitrogen. Furthermore, *Agromyces* and *Mycoplana* promote plant growth through the solubilization of nutrients such as phosphorus. Likewise, *Glycomyces* and *Promicromonospora*, *Kribbella*, and *Limibaculum* participate in the decomposition of organic matter and produce antifungal compounds, which contribute to biological control. *Gemmata* and *Singulisphaera* facilitate the mineralization of nutrients, making them available to plants. *Devsia* and *Pseudaminobacter* help in the degradation of organic compounds and pollutants, improving soil quality (Figure 11).

Figure 11. The use of green manure *Crotalaria* promotes genera of beneficial soil bacteria such as (a) *Streptomyces*, (b) *Microvirga*, (c) *Gemmata*, (d) *Agromyces*, (e) *Ensifer*, and (f) *Glycomyces*. The letters “a”, “b”, “bc”, “c” indicate significant differences between treatments. Same-letter treatments are not significantly different from one another. On the other hand, intermediate combinations such as “bc”, show that a treatment shares similarities with both groups.

3.8. Venn Diagrams of Soil Bacteria and Fungi Promoted by Green Manure

The soils of La Huerta, Barranca, are represented by 307 unique bacterial genera, which are shared in soils C0 (161), C1 (206), P0 (183), and P1 (200). On the other hand, for fungi they are represented by 145 unique genera, shared in C0 with 108, C1, 125, P0, 107, and P1, 88 genera. The Venn diagrams show that 111 bacterial genera (36.2%) are common to all soil conditions, whereas C1 and P1 have 41 (13.4%) and 35 (11.4%), respectively, as their own. On the other hand, 66 genera (45.2%) of fungi are common to all the soils evaluated, whereas C1 and P1 promote 13 (8.9%) and five (3.4%) as their own, respectively (Figure 12).

Figure 12. Venn diagrams of bacteria (a) and fungi (b) of C0, C1, P0, and P1.

P1-specific bacteria include among others *Saccharothrix*, *Phytomonospora*, and *Actinococci* which belong to the actinomycetes and have various beneficial functions in the soil. C1 also has its own genera, such as *Pseudonocardia*, *Saccharopolyspora*, *Prauserella*, and *Actinophytocella*, which belong to the actinomycetes and are considered to perform various functions in the soil, including protecting plants against pathogens through the production of antibiotics and improving soil fertility through the decomposition of organic matter. Benefits that in the time of the Incas were taken advantage of, because by resting the soils the fertility of the soil was recovered and when they returned to cultivate the plots the soil did not require external inputs, and production was achieved with the natural fertility of the soil accumulated over several years (5 to 15 years).

4. Discussion

Plants belonging to the *Crotalaria* genus are characterized by their fast vegetative growth, substantial biomass production, efficient extraction of nutrients from the soil, and exceptional adaptability to low soil fertility conditions [17,61], and depending on the conditions they can provide around 7.9 t/ha of *Crotalaria juncea* L. biomass, approximately 223 kg/ha of nitrogen, 27 kg/ha of phosphorus, and 247 kg/ha of potassium to the soil [62], similar to the results achieved in this experiment (Table 2).

It is also important to note that *Crotalaria* as green manure not only provides nutrients to the soil, but also offers other benefits such as fixing nitrogen, its nematicide action, controlling weeds, improving fertility, and promoting soil structure [39,63–67] (Table 3). It also highlights the ability to suppress pathogenic fungi from the soil (Figure 5) and other benefits, which make it an attractive option for farmers, so that its incorporation into agricultural systems promotes soil health and contributes to reducing farmers' addiction to external inputs, such as synthetic nitrogen fertilizers and pesticides [68–71].

The high P content in these soils can be attributed to the synthetic fertilizers that the farmers have used for many decades to fertilize their crops (Table 3). In addition, its low efficiency, which ranges from 15 to 30% [72], means that farmers use more than the doses that the plants need. Five weeks after its application to the soil, about 60% of the P is insolubilized; in this way, the precipitation of phosphorus is the predominant mechanism

that reduces its availability [73]. Therefore, the soils evaluated are soils with high P content and are statistically similar, where the contribution of P by the green manure (26.61 kg per ha) is quite low (Table 2). Similar behavior is observed in terms of the high K content in the soil, possibly due to the fixation of potassium from many years of application [74–76]. Green manure contributes 116.70 kg of K in its leaf biomass and 10.50 kg in its root biomass, and in total it contributes 127.20 kg of K per ha. This contribution is lower than those reported by [62], who indicate a contribution of 364.25 kg of K per ha, and also clarify that the largest reserve of K is found in the stems of green manure (Tables 2 and 3 and Figure 2).

The application of green manures helps to increase the pH of the soil due to the various processes that the organic source undergoes, such as the microbial decomposition of carbohydrates, ammonium mineralization, the high content of cations that form bases of vegetable residues such as the contribution of Ca in the biomass of the *Crotalaria* and the amount of vegetable residue, etc. (Table 2; Figure 2b). Likewise, the increase in pH in the soil is due to the decarboxylation of organic ions and the bonding of hydrogen ions (H^+) with organic anions and other chemically negatively charged functional groups, and this process varies according to the type of residue and the initial pH of the soil [77].

Organic matter together with other factors conditions the activity of soil macro- and microorganisms. The more plant biomass is contributed to the soil, the greater the quantity and variety of microorganisms that will be favored because organic carbon content is a key factor for soil health and plays an important role in mitigating the effects of climate change [78,79]. On the other hand, soils poor in organic matter, such as Barranca (Tables 2 and 3), require urgent replacement of organic matter, so the inclusion of green manure crops that provide high-energy organic matter favors the increase in microbial biomass and other functions [8,19,80].

Once incorporated into the soil, green manure promotes various bacterial genera, which when compared with other soils present statistical differences. We have *Streptomyces*, *Nocardia*, *Microvirga*, *Gemmata*, *Agromyces* (Figure 11), *Mycobacterium*, *Promicromonospora*, *Devosia*, *Kribbella*, *Ensifer*, *Glycomyces*, *Mycoplana*, *Stenotrophobacter*, *Nonomuraea*, *Mesorhizobium*, *Pseudaminobacter*, *Singulisphaera*, and *Limibaculum*, of which the genera *Streptomyces*, *Microvirga*, *Ensifer* (*Sinorhizobium*), *Devosia*, and *Mesorhizobium* are widely known for their activity as Plant Growth-Promoting Rhizobacteria (PGPR) [81–84]. Likewise, in these environments where various pesticides have been applied for many years and continue to be applied, the presence of the genera *Streptomyces*, *Microvirga*, *Mycobacterium*, *Devosia*, and *Nocardia* is good, because they have species that are involved in bioremediation processes, especially in the degradation of hydrocarbons and other organic pollutants; likewise, they have enzymes to degrade soil organic matter [84–87].

Currently, in the agricultural fields of Barranca, the presence of pathogenic fungi reduces crop growth and yield and, in severe cases, destroys crops, leading to economic losses for families [88,89]. As a result, farmers spend large sums of money protecting their crops with constant applications of fungicides and other chemicals to control pathogenic fungi, which increases production costs [90]. On the other hand, Barranca is considered the best paprika production center, but it presents a problem in production due to the presence of aflatoxins. These mycotoxins are produced by various fungi, *Fusarium*, *Alternaria*, *Penicillium*, and *Aspergillus*, which contaminate crops from the field [91–93].

Crotalaria, when used as green manure, can help suppress the development of soil pathogenic fungi. This action is possible because *Crotalaria* contains sulfur compounds such as glucosinolates that, when incorporated into the soil, release isothiocyanates with biofumigant properties, which in addition to other secondary metabolites, such as pyrrolizidine alkaloids, flavonoids, and phenolic compounds, have inhibitory effects on various pathogenic fungi in the soil, such as *Fusarium*, *Rhizoctonia*, and *Pythium* [68,70,71].

The soils evaluated are soils poor in organic matter. On the other hand, they have a high content of P and K, and possibly also of N because high doses of nitrogen fertilization are applied. Likewise, the application of synthetic fertilizers, especially NPK, increases the relative abundance of fungal phytopathogens such as *Alternaria* and *Fusarium*. In other

experiments, the pathogen burden of the community increases with fertilization intensity, because fertilization promotes the abundance of the pathogen and increases the severity of crop disease [94,95]. Apart from synthetic fertilizers, pesticides, and some agricultural practices such as stubble burning, they contribute to reducing the population of beneficial microorganisms in the soil, so there is less resistance to the increase in pathogens in crop fields [96,97] (Figure 9). In the soils evaluated in C1, plant pathogenic fungi are represented with a high number of sequences, mainly by *Cladosporium* (24.23%), *Fusarium* (11.68%), *Alternaria* (3.85%), and *Rhizoctonia* (0.96%). On the other hand, in P1 their presence is reduced for *Cladosporium* (10.33%), *Fusarium* (8.18%), *Alternaria* (0.77%), and *Rhizoctonia* (0.36%). Likewise, fungi that degrade soil organic matter, such as *Mortierella* and *Humicola*, in C1 are represented by 3.98% and 2.95%, respectively. On the other hand, in P1, *Mortierella* represents 40.06% and *Humicola* 13.99% (Figures 9 and 10). This indicates that the restoration of soil biota, in a field conducted under the system of intensive agriculture and high inputs, is completely different from the restoration of soil biota conducted under the organic farming system [35].

The introduction of *Crotalaria* and its incorporation as green manure is a cheap and affordable source to supply organic matter to the farms. This process benefits the presence of *Mortierella*, a genus that thrives as a saprophyte of organic matter, certain strains of this genus are categorized as plant growth-promoting fungi (PGPF) and enhance the availability of phosphorus in agricultural soils, produce siderophores, generate phytohormones, and contribute positively to plant growth [83,98,99]. *Chaetomium* is also recognized for its biocontrol potential and its ability to suppress the growth of fungi and bacteria through competition. Some species act as endophytes [100–102]. On the other hand, *Humicola* is a saprophytic fungus important for the mineralization of organic carbon and nitrogen. This species uses various sources of carbon, from the simplest sugars to more complex molecules such as organic acids, disaccharides, starch, pectin, cellulose, fats, and lignin. Due to its thin and extensive hyphae, it is able to explore different sources of organic carbon, while at the same time it encourages the aggregation of particles and improves the structure of the soil [103–106]. On the other hand, *Streptomyces* is a Gram-positive soil bacterium that synthesizes a range of advantageous secondary metabolites, including antibiotics and enzymes, which safeguard plants against pathogens and foster their growth [107–110].

5. Conclusions

Crotalaria adapts very well in Barranca. It has a fast and exuberant growth, and it does not need extra fertilization, nor control of pests and diseases, so it is an alternative to improve soil fertility. It provides 9723 kg of dry biomass and 233 kg of N per ha and growing season. It also reduces plant pathogenic fungi. In P1, the presence of *Crotalaria* reduced the presence of *Cladosporium* (10.33%—3892 ASV), *Fusarium* (8.18%—3082 ASV), *Alternaria* (0.77%—292 ASV), and *Rhizoctonia* (0.36%—137 ASV); on the other hand, in C1, a fallow plot, a greater presence of *Cladosporium* (24.23%—9384 ASV), *Fusarium* (11.68%—4523 ASV), *Alternaria* (3.85%—1492 ASV), and *Rhizoctonia* (0.96%—371 ASV) was found. Likewise, when the presence and action of natural biocontrol in the soil is suppressed (C0 and P0), and pathogenic fungi are controlled exclusively with chemicals (C0 and P0), when the soil goes fallow, the population of pathogenic fungi is the population with the greatest presence (C1).

The soils evaluated present a high diversity of bacteria and fungi as indicated by the Shannon index. Likewise, when *Crotalaria* is added as a green manure, it promotes various genera such as *Streptomyces*, *Microvirga*, *Ensifer* (*Sinorhizobium*), *Devosia*, and *Mesorhizobium*, which are favored. These genera are known to have species that act as PGPRs. Likewise, green manure promotes a population of fungi involved in the use and degradation of organic sources, such as *Mortierella* and *Humicola*.

Author Contributions: Conceptualization, G.J.A. and M.F.-L.; methodology, G.J.A. and M.F.-L.; software, G.J.A., P.J.V. and M.F.-L.; validation, G.J.A. and M.F.-L.; formal analysis, G.J.A., P.J.V. and M.F.-L.; investigation, R.O. and G.J.A.; data curation, G.J.A., P.J.V., R.O., A.S. and M.F.-L.; writing—original draft preparation, G.J.A., R.O. and A.S.; writing—review and editing, G.J.A., P.J.V. and M.F.-L.; supervision, M.F.-L. and G.J.A.; project administration, G.J.A.; funding acquisition, G.J.A. and M.F.-L. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by “Contrato PE501079087-2022-CONCYTEC-PROCIENCIA-UNAB, Perú”, grant number “PE501079087-2022” and Winner of the applied research project competition, seed modality, financed by Prociencia-Concytec, Peru.

Data Availability Statement: Raw stream reads (SRA accession numbers SAMN43364324/SAMN43364515) are available in the NCBI GenBank database under BioProject the access number PRJNA1152496 (Accessible from 1 October 2024).

Acknowledgments: This project has been possible thanks to the financial support of Prociencia-Concytec through Contract PE501079087-2022-CONCYTEC-PROCIENCIA-UNAB, whose contribution was essential for the execution of the research. Likewise, we express our deep gratitude to the National University of Barranca to the Vice Presidency of Research for their funding for the publication of the results obtained, allowing the dissemination of this work. Likewise, our thanks to the farmer Eugenio Mariluz, the Magister Jorge Agurto Isidro and the Biologist Rubén Ferro Mauricio, in a special way, whose collaboration and valuable contributions were fundamental for the development and success of this project.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Naciones Unidas. *La Agenda 2030 y Los Objetivos de Desarrollo Sostenible Una Oportunidad Para América Latina y El Caribe* (LC/G.2681-P/Rev.3); Naciones Unidas: Santiago, Chile, 2018; p. 91, ISBN 978-92-1-058643-6.
2. Naciones Unidas. *Agenda 2030 y Los Objetivos de Desarrollo Sostenible. Una Oportunidad Para América Latina y El Caribe*; Naciones Unidas: Santiago, Chile, 2016; p. 50, ISBN 9788578110796.
3. Caramanica, A.; Mesia, L.H.; Morales, C.R.; Huckleberry, G.; Luis Jaime Castillo, B.; Quilter, J. El Niño Resilience Farming on the North Coast of Peru. *Proc. Natl. Acad. Sci. USA* **2020**, *117*, 24127–24137. [[CrossRef](#)] [[PubMed](#)]
4. Gunstone, T.; Cornelisse, T.; Klein, K.; Dubey, A.; Donley, N. Pesticides and Soil Invertebrates: A Hazard Assessment. *Front. Environ. Sci.* **2021**, *9*, 643847. [[CrossRef](#)]
5. Bejger, R.; Ukalska-Jaruga, A.; Ćwielag-piasecka, I.; Weber, J.; Jamroz, E.; Jerzykiewicz, M.; Debicka, M.; Bekier, J. Identification of Potential Pesticide Accumulation Processes in Soil. In Proceedings of the the 23rd EGU General Assembly, Online, 19–30 April 2021; pp. 4–5. [[CrossRef](#)]
6. Kumar, R.; Saurabh, K.; Kumawat, N.; Mishra, J.S.; Hans, H.; Krishna, B.; Meena, R.S.; Jha, B.K.; Upadhyay, P.K.; Hazra, K.K. Conservation Agriculture: Perspectives on Soil and Environmental Management in Indo-Gangetic Plains of South Asia. In *Sustainable Management of Soil and Environment*; Springer: Berlin/Heidelberg, Germany, 2019; ISBN 9789811388323.
7. Potharaju, R.; Aruna, M. The Effects of Pesticide Exposure on Waterbodies and Remediation. *Int. Res. J. Mod. Eng. Technol. Sci.* **2024**, *6*. [[CrossRef](#)]
8. Pandey, C. Management of Crop Residue for Sustaining Soil Fertility and Foodgrains Production in India. *Acta Sci. Agric.* **2019**, *3*, 188–195.
9. Pradess, M. Crop Residue Burning: Consequences on Soil Microbes 2. *Har. Dhara* **2019**, *2*, 25–32.
10. Ngole-Jeme, V.M. Fire-Induced Changes in Soil and Implications on Soil Sorption Capacity and Remediation Methods. *Appl. Sci.* **2019**, *9*, 3447. [[CrossRef](#)]
11. Rodríguez-Eugenio, N.; McLaughlin, M.; Pennock, D. *La Contaminación Del Suelo: Una Realidad Oculta*; FAO: Roma, Italy, 2019; ISBN 9789251316399.
12. Meena, R.S.; Kumar, S.; Datta, R.; Lal, R.; Vijayakumar, V.; Brtnicky, M.; Sharma, M.P.; Yadav, G.S.; Jhariya, M.K.; Jangir, C.K.; et al. Impact of Agrochemicals on Soil Microbiota and Management: A Review. *Land* **2020**, *9*, 34. [[CrossRef](#)]
13. Prashar, P.; Shah, S. Impact of Fertilizers and Pesticides on Soil Microflora in Agriculture. In *Sustainable Agriculture Reviews*; Springer: Berlin/Heidelberg, Germany, 2016; pp. 331–361, ISBN 9783319267777.
14. Ziblim, A. Assessing Soil Amendment Potentials of Mucuna Pruriens and Crotalaria Juncea When Used as Fallow Crops. *J. Soil Sci. Environ. Manag.* **2013**, *4*, 28–34. [[CrossRef](#)]
15. Silva, B.N.P.; Masetto, T.E.; Rocha, L.G. An Insight into Seed Priming Response of Crotalaria Ochroleuca and Crotalaria Spectabilis during Storage. *Braz. J. Biol.* **2024**, *84*, 1–8. [[CrossRef](#)]
16. Sharma, S.G.; Sharma, N.R.; Sharma, M. Microbes in Soil and Their Metagenomics. In *Microbial Diversity, Interventions and Scope*; Springer: Singapore, 2020; pp. 85–96, ISBN 9789811540998. [[CrossRef](#)]

17. Koudahe, K.; Allen, S.C.; Djaman, K. Critical Review of the Impact of Cover Crops on Soil Properties. *Int. Soil Water Conserv. Res.* **2022**, *10*, 343–354. [\[CrossRef\]](#)

18. Gummert, M.; Van Hung, N.; Chivenge, P.; Douthwaite, B. *Sustainable Rice Straw Management*; Springer: Berlin/Heidelberg, Germany, 2020; ISBN 9783030323721.

19. Sarkar, S.; Skalicky, M.; Hossain, A.; Brestic, M.; Saha, S.; Garai, S.; Ray, K.; Brahmachari, K. Management of Crop Residues for Improving Input Use Efficiency and Agricultural Sustainability. *Sustainability* **2020**, *12*, 9808. [\[CrossRef\]](#)

20. Naik, M.R.; Kumar, R.; Kundu, S. Cover-Crop Technology for Soil Health Improvement, Land Degradation Neutrality, and Climate Change Adaptation. *Legume Cover. Crops* **2022**, *18*, 440–460.

21. Abdalla, M.; Hastings, A.; Cheng, K.; Yue, Q.; Chadwick, D.; Espenberg, M.; Truu, J.; Rees, R.M.; Smith, P. A Critical Review of the Impacts of Cover Crops on Nitrogen Leaching, Net Greenhouse Gas Balance and Crop Productivity. *Glob. Chang. Biol.* **2019**, *25*, 2530–2543. [\[CrossRef\]](#)

22. Singh, B.; Rengel, Z. The Role of Crop Residues in Improving Soil Fertility. In *Nutrient Cycling in Terrestrial Ecosystems*; Springer: Berlin/Heidelberg, Germany, 2007; ISBN 9783540680277.

23. Lal, R. Restoring Soil Quality to Mitigate Soil Degradation. *Sustainability* **2015**, *7*, 5875–5895. [\[CrossRef\]](#)

24. Meena, R.S.; Das, A.; Singh, G.; Lal, R. *Legumes for Soil Health and Sustainable Management*; Springer: Berlin/Heidelberg, Germany, 2018; ISBN 9789811302527.

25. Shirale, A.O.; Meena, B.P.; Biswas, A.K. Green Manuring: A Panacea for the Reclamation of Saline and Sodic Soils. *Har. Dhara* **2018**, *1*, 19–21.

26. Frossard, E.; Bünenmann, E.K.; Gunst, L.; Oberson, A.; Schärer, M.; Tamburini, F. *Fate of Fertilizer P in Soils—the Organic Pathway*; Springer: Berlin/Heidelberg, Germany, 2016; ISBN 9789401776127.

27. Kakraliya, S.K.; Singh, U.; Bohra, A.; Choudhary, K.K.; Kumar, S.; Meena, R.S.; Jat, M.L. *Nitrogen and Legumes: A Meta-Analysis*; Springer: Berlin/Heidelberg, Germany, 2018; ISBN 9789811302527.

28. Ma, D.; Yin, L.; Ju, W.; Li, X.; Liu, X.; Deng, X.; Wang, S. Meta-Analysis of Green Manure Effects on Soil Properties and Crop Yield in Northern China. *Field Crop. Res.* **2021**, *266*, 108146. [\[CrossRef\]](#)

29. Cherr, C.M.; Scholberg, J.M.S.; McSorley, R. Green Manure Approaches to Crop Production: A Synthesis. *Agron. J.* **2006**, *98*, 302–319. [\[CrossRef\]](#)

30. Meagher, R.L.; Watrous, K.M.; Fleischer, S.J.; Nagoshi, R.N.; Brown, J.T.; Bowers, K.; Miller, N.; Hight, S.D.; Legaspi, J.C.; Westbrook, J.K. Documenting Potential Sunn Hemp (*Crotalaria juncea* L.) (Fabaceae) Pollinators in Florida. *Environ. Entomol.* **2019**, *48*, 343–350. [\[CrossRef\]](#)

31. Florentín, M.A.; Peñalva, M.; Calegari, A.; Translated, R.D.; McDonald, M.J. *Green Manure/Cover Crops and Crop Rotation in Conservation Agriculture on Small Farms*; 2010; Volume 12, ISBN 978-92-5-106856-4. Available online: https://www.fao.org/fileadmin/user_upload/agp/icm12.pdf (accessed on 23 July 2024).

32. ECHO Community. Sunn Hemp. Available online: <https://www.echocommunity.org/es/resources/1ad2329d-2019-4dd2-a3a2-2700b01b2cbe> (accessed on 24 May 2024).

33. Jimenes, S.A.M.; Farfán, V.F.; Morales-Londoño, C.S. Biomasa Seca y Contenido de Nutrientes de Cajanus Cajan, *Crotalaria Juncea* y *Tephrosia Candida*, Empleadas Como Abonos Verdes En Cafetales. *Cenicafé* **2005**, *56*, 93–109.

34. Guerrero, A.M.; Rodriguez, E.E.; Leiva, S.; Pollack, L.E. Zonas de Vida En El Proceso de La Zonificación Ecológica Económica (ZEE) de La Provincia de Trujillo, Región La Libertad, Perú. *Arnaldoa* **2019**, *26*, 761–792.

35. Estrada, R.; Cosme, R.; Porras, T.; Reynoso, A.; Calderon, C.; Arbizu, C.I.; Arone, G.J. Changes in Bulk and Rhizosphere Soil Microbial Diversity Communities of Native Quinoa Due to the Monocropping in the Peruvian Central Andes. *Microorganisms* **2023**, *11*, 1926. [\[CrossRef\]](#) [\[PubMed\]](#)

36. Gazoulis, I.; Kanatas, P.; Antonopoulos, N.; Tataridas, A.; Travlos, I. Narrow Row Spacing and Cover Crops to Suppress Weeds and Improve Sulla (*Hedysarum coronarium* L.) Biomass Production. *Energies* **2022**, *15*, 7425. [\[CrossRef\]](#)

37. Anwar, S.; Faisal Nadeem, M.; Pervaiz, I.; Khurshid, U.; Akmal, N.; Aamir, K.; Haseeb ur Rehman, M.; Almansour, K.; Alshammari, F.; Shaikh, M.F.; et al. A Comprehensive Phytochemical, Biological, and Toxicological Studies of Roots and Aerial Parts of *Crotalaria Burhia* Buch.-Ham: An Important Medicinal Plant. *Front. Plant Sci.* **2022**, *13*, 988352. [\[CrossRef\]](#) [\[PubMed\]](#)

38. Grabau, Z.J. Management of Nematodes and Soil Fertility with Sunn Hemp Cover Crop. *Edis* **2022**, *2022*, 1–9. [\[CrossRef\]](#)

39. Lanna, A.C.; Silva, M.A.; Moreira, A.S.; Nascente, A.S.; de Fillipi, M.C.C. Improved Nutrient Uptake in Three *Crotalaria* Species Inoculated with Multifunctional Microorganisms. *Rev. Bras. Eng. Agric. e Ambient.* **2021**, *25*, 460–465. [\[CrossRef\]](#)

40. Jalali, Z.; Falahzadah, M.H. Effect of Sunnhemp (*Crotalaria juncea* L.) Green Manuring on Weed Dynamics in Puddle Transplanted Rice-Based Systems. *Egypt. J. Agric. Res.* **2021**, *99*, 314–323. [\[CrossRef\]](#)

41. Tabatabai, M.A. *Handbook of Reference Methods for Plant Analysis*; CRC Press: Boca Raton, FL, USA, 1998; Volume 38, ISBN 9781574441246.

42. Álvaro-Fuentes, J.; Lóczy, D.; Thiele-Bruhn, S.; Zornoza, R. *Handbook of Plant and Soil Analysis for Agricultural Systems*; CERN: Meyrin, Switzerland, 2019; ISBN 9788416325863.

43. IUSS Working Group WRB. *World Reference Base for Soil Resources. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps*, 4th ed.; International Union of Soil Sciences (IUSS): Vienna, Austria, 2022; ISBN 97898986245119.

44. Bazán, T.; Rubén. Manual de Procedimientos de los Análisis de Suelos y Agua con Fines de Riego. 2017, p. 89. Available online: https://repositorio.inia.gob.pe/bitstream/20.500.12955/504/1/Bazan-Manual_de_procedimientos_de_los.pdf (accessed on 24 May 2024).

45. Pansu, M.; Pansu, M. *Handbook of Soil Analysis Mineralogical, Organic and Inorganic Methods*; Springer: Berlin/Heidelberg, Germany, 2006; ISBN 9783540312109.

46. Oliveros, J. Venny2.1.0 An Interactive Tool for Comparing Lists with Venn’s Diagrams. 2015. Available online: <https://bioinfogp.cnb.csic.es/tools/venny/index.html> (accessed on 20 May 2024).

47. Takahashi, S.; Tomita, J.; Nishioka, K.; Hisada, T.; Nishijima, M. Development of a Prokaryotic Universal Primer for Simultaneous Analysis of Bacteria and Archaea Using Next-Generation Sequencing. *PLoS ONE* **2014**, *9*, e105592. [CrossRef]

48. White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and Direct Sequencing of Fungal Ribosomal RNA Genes for Phylogenetics. *PCR Protoc.* **1990**, *31*, 315–322. [CrossRef]

49. Ihrmark, K.; Bödeker, I.T.M.; Cruz-Martinez, K.; Friberg, H.; Kubartova, A.; Schenck, J.; Strid, Y.; Stenlid, J.; Brandström-Durling, M.; Clemmensen, K.E.; et al. New Primers to Amplify the Fungal ITS2 Region—Evaluation by 454-Sequencing of Artificial and Natural Communities. *FEMS Microbiol. Ecol.* **2012**, *82*, 666–677. [CrossRef]

50. Curry, E. *Introduction to Bioinformatics with R*, 1st ed.; Chapman and Hall/CRC: London, UK, 2020; ISBN 9781138498952.

51. Gentleman, R. *R Programming for Bioinformatics*; CRC Press: London, UK, 2009; ISBN 9781420063677.

52. Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-Resolution Sample Inference from Illumina Amplicon Data. *Nat. Methods* **2016**, *13*, 581–583. [CrossRef]

53. Saeidipour, B.; Bakhshi, S. The Relationship between Organizational Culture and Knowledge Management, & Their Simultaneous Effects on Customer Relation Management. *Adv. Environ. Biol.* **2013**, *7*, 2803–2809.

54. Bars-Cortina, D.; Moratalla-Navarro, F.; García-Serrano, A.; Mach, N.; Riobó-Mayo, L.; Vea-Barbany, J.; Rius-Sansalvador, B.; Murcia, S.; Obón-Santacana, M.; Moreno, V. Improving Species Level-Taxonomic Assignment from 16S rRNA Sequencing Technologies. *Curr. Protoc.* **2023**, *3*, e930. [CrossRef]

55. Abarenkov, K.; Nilsson, R.H.; Larsson, K.H.; Taylor, A.F.S.; May, T.W.; Frøslev, T.G.; Pawlowska, J.; Lindahl, B.; Pöldmaa, K.; Truong, C.; et al. The UNITE Database for Molecular Identification and Taxonomic Communication of Fungi and Other Eukaryotes: Sequences, Taxa and Classifications r Econsider Ed. *Nucleic Acids Res.* **2024**, *52*, D791–D797. [CrossRef]

56. Nilsson, R.H.; Larsson, K.H.; Taylor, A.F.S.; Bengtsson-Palme, J.; Jeppesen, T.S.; Schigel, D.; Kennedy, P.; Picard, K.; Glöckner, F.O.; Tedersoo, L.; et al. The UNITE Database for Molecular Identification of Fungi: Handling Dark Taxa and Parallel Taxonomic Classifications. *Nucleic Acids Res.* **2019**, *47*, D259–D264. [CrossRef]

57. Silva-Ávila, N.; Hernández, F.J.; Nájera-Luna, J.A.; Aguirre-Calderón, C.E.; Domínguez-Gómez, T.G. Characterization of the Flora Diversity of the San Ignacio Oasis, Baja California Sur. *Rev. Chapingo Ser. Ciencias For. y del Ambiente* **2023**, *29*, 109–127. [CrossRef]

58. González, M.L.; Chimeno, S.V.; Sturm, M.E.; Becerra, L.M.; Lerena, M.C.; Rojo, M.C.; Combina, M.; Mercado, L.A. Populations of *Saccharomyces Cerevisiae* in Vineyards: Biodiversity and Persistence Associated with Terroir. *Fermentation* **2023**, *9*, 292. [CrossRef]

59. Brinkgreve, R.B.J.; Kumarswamy, S. Reference Manual Reference Manual. *Technology* **2008**, *1*, 720–766.

60. de Mendiburu, F. *Agricolae Tutorial*. 2023. Available online: <https://cran.r-project.org/web/packages/agricolae/vignettes/tutorial.pdf> (accessed on 24 June 2024).

61. Ramanjaneyulu, A.V.; Sainath, N.; Swetha, D.; Reddy, R.U.; Jagadeeshwar, R. Green Manure Crops: A Review. *Biol. Forum-An Int. J.* **2021**, *13*, 445.

62. Barbosa, I.R.; Santana, R.S.; Mauad, M.; Garcia, R.A. Dry Matter Production and Nitrogen, Phosphorus and Potassium Uptake in *Crotalaria Juncea* and *Crotalaria Spectabilis*. *Pesqui. Agropecu. Trop.* **2020**, *50*, e61011. [CrossRef]

63. Daimon, H. Traits of the Genus *Crotalaria* Used as a Green Manure Legume on Sustainable Cropping Systems. *Japan Agric. Res. Q.* **2006**, *40*, 299–305. [CrossRef]

64. Sankhla, I.S.; Meghwal, R.R.; Choudhary, S.; Rathi, S.; Tak, N.; Tak, A.; Gehlot, H.S. Molecular Characterization of Microsymbionts Associated with Root Nodules of *Crotalaria Burhia* Buch.-Ham. Ex Benth., a Native Keystone Legume Species from Thar Desert of India. *Indian J. Exp. Biol.* **2018**, *56*, 373–384.

65. Nezomba, H.; Tauro, T.P.; Mtambanengwe, F.; Mapfumo, P. Nitrogen Fixation and Biomass Productivity of Indigenous Legumes for Fertility Restoration of Abandoned Soils in Smallholder Farming Systems. *S. Afr. J. Plant Soil* **2008**, *25*, 161–171. [CrossRef]

66. Berriel, V.; Monza, J.; Perdomo, C.H. Cover Crop Selection by Jointly Optimizing Biomass Productivity, Biological Nitrogen Fixation, and Transpiration Efficiency: Application to Two *Crotalaria* Species. *Agronomy* **2020**, *10*, 1116. [CrossRef]

67. Rech, C.; Ribeiro, L.P.; Bento, J.M.S.; Pott, C.A.; Nardi, C. Monocrotaline Presence in the *Crotalaria* (Fabaceae) Plant Genus and Its Influence on Arthropods in Agroecosystems. *Braz. J. Biol.* **2024**, *84*, e256916. [CrossRef] [PubMed]

68. Cruz-Rodríguez, R.I.; Meza-Gordillo, R.; Rodríguez-Mendiola, M.A.; Arias-Castro, C.; Mancilla-Margalli, N.A.; Ávila-Miranda, M.E.; Culebro-Ricaldi, J.M.; Gutiérrez-Miceli, F.A.; Ruiz-Valdiviezo, V.M.; Ayora-Talavera, T.D.R. Antifungal Activity of *Crotalaria Longirostrata* Hook. & Arn. Extracts against Phytopathogen Fungi from Maize. *Gayana. Botánica* **2017**, *74*, 167–175. [CrossRef]

69. Cruz-Rodríguez, R.I.; Cruz-Salomón, A.; Ruiz-Lau, N.; Pérez-Villatoro, J.I.; Esquinca-Avilés, H.A.; Meza-Gordillo, R. Potential Application of *Crotalaria Longirostrata* Branch Extract to Reduce the Severity of Disease Caused by Fusarium. *Agronomy* **2020**, *10*, 524. [CrossRef]

70. López, H.L.; Beach, M.B.; Castro, E.; Chávez, E.C.; Carlos, J.; Ortiz, D. Potencial Agroecológico de *Crotalaria* spp. Como Extracto Vegetal En La Agricultura Agriculture. *Rev. De La Fac. De Agron.* **2022**, *121*, 112.

71. Miranda-Granados, J.; Chacón, C.; Ruiz-Lau, N.; Vargas-Díaz, M.E.; Zepeda, L.G.; Alvarez-Gutiérrez, P.; Meza-Gordillo, R.; Lagunas-Rivera, S. Alternative Use of Extracts of Chipilín Leaves (*Crotalaria Longirostrata* Hook. & Arn) as Antimicrobial. *Sustainability* **2018**, *10*, 883. [\[CrossRef\]](#)

72. Patle, T.; Khaddar, V.K.; Tiwari, R.; Para, P. Evaluation of Phosphorus Availability and Phosphorus Fixation in Four Different Soils Orders. *J. Pharmacogn. Phytochem.* **2019**, *8*, 2087–2090.

73. Tunisi, S.; Poggi, V.; Gessa, C. Phosphate Adsorption and Precipitation in Calcareous Soils: The Role of Calcium Ions in Solution and Carbonate Minerals. *Nutr. Cycl. Agroecosystems* **1999**, *53*, 219–227. [\[CrossRef\]](#)

74. Srinivasarao, C.; Kundu, S.; Rao, K.V.; Shukla, A.K.; Rao, A.S.; Imas, P.; Bolan, N.S.; Lal, R.; Prasad, J.V.N.S.; Abhilash, P.C.; et al. Soil Potassium Fertility and Management Strategies in South Asian Agriculture. *Adv. Agron.* **2023**, *177*, 51–124. [\[CrossRef\]](#)

75. Najafi-Ghiri, M.; Abtahi, A. Potassium Fixation in Soil Size Fractions of Arid Soils. *Soil Water Res.* **2013**, *8*, 49–55. [\[CrossRef\]](#)

76. Ikiriko, M.E.; Kamalu, O.J.; Joseph, I.E. Potassium Fixation of Some Soils Derived from Different Parent Materials in Cross River State, Nigeria. *Greener J. Agric. Sci.* **2022**, *12*, 1–15.

77. Butterly, C.R.; Baldock, J.A.; Tang, C. The Contribution of Crop Residues to Changes in Soil PH under Field Conditions. *Plant Soil* **2013**, *366*, 185–198. [\[CrossRef\]](#)

78. Sumiahadi, A.; Acar, R. Green Manure for Soil Properties Improvement. In Proceedings of the 2nd International Eurasian Conference on Science, Engineering and Technology, Gaziantep, Turkey, 7–9 October 2020.

79. FAO Mapa de Carbono Orgánico Del Suelo. *Alianza Mund. por el Suelo*; FAO: Quebec City, QC, Canada, 2017; pp. 1–5.

80. Saleh, M.I. Influence of Effective Microorganisms and Green Manure on Soil Properties and Productivity of Pearl Millet and Alfalfa Grown on Sandy Loam in Saudi Arabia. *Afr. J. Microbiol. Res.* **2013**, *7*, 375–382. [\[CrossRef\]](#)

81. Soni, R.; Chandra, D.; Prachi, S.; Reeta, B. *Microbiological Activity for Soil and Plant Health Management*; Springer: Berlin/Heidelberg, Germany, 2021; ISBN 9789811629211.

82. Hasan, A.; Tabassum, B.; Hashim, M.; Khan, N. Role of Plant Growth Promoting Rhizobacteria (PGPR) as a Plant Growth Enhancer for Sustainable Agriculture: A Review. *Bacteria* **2024**, *3*, 59–75. [\[CrossRef\]](#)

83. Saharan, B.S.; Nehra, V. Plant Growth Promoting Rhizobacteria: A Critical Review. *Life Sci. Med. Res.* **2011**, *2011*, 1–30.

84. Azadi, D.; Shojaei, H. Biodegradation of Polycyclic Aromatic Hydrocarbons, Phenol and Sodium Sulfate by Nocardia Species Isolated and Characterized from Iranian Ecosystems. *Sci. Rep.* **2020**, *10*, 21860. [\[CrossRef\]](#) [\[PubMed\]](#)

85. Silva, J.P.; Ticona, A.R.P.; Hamann, P.R.V.; Quirino, B.F.; Noronha, E.F. Deconstruction of Lignin: From Enzymes to Microorganisms. *Molecules* **2021**, *26*, 2299. [\[CrossRef\]](#)

86. Rodríguez-Fonseca, M.F.; Sánchez-Suárez, J.; Valero, M.F.; Ruiz-Balaguera, S.; Díaz, L.E. Streptomyces as Potential Synthetic Polymer Degraders: A Systematic Review. *Bioengineering* **2021**, *8*, 154. [\[CrossRef\]](#)

87. Hamdan, A.M.; Abd-El-Mageed, H.; Ghanem, N. Biological Treatment of Hazardous Heavy Metals by Streptomyces Rochei ANH for Sustainable Water Management in Agriculture. *Sci. Rep.* **2021**, *11*, 9314. [\[CrossRef\]](#) [\[PubMed\]](#)

88. Chatterjee, S.; Kuang, Y.; Splivallo, R.; Chatterjee, P.; Karlovsky, P. Interactions among Filamentous Fungi Aspergillus Niger, Fusarium Verticillioides and Clonostachys Rosea: Fungal Biomass, Diversity of Secreted Metabolites and Fumonisin Production. *BMC Microbiol.* **2016**, *16*, 83. [\[CrossRef\]](#) [\[PubMed\]](#)

89. Peng, Y.; Li, S.J.; Yan, J.; Tang, Y.; Cheng, J.P.; Gao, A.J.; Yao, X.; Ruan, J.J.; Xu, B.L. Research Progress on Phytopathogenic Fungi and Their Role as Biocontrol Agents. *Front. Microbiol.* **2021**, *12*, 670135. [\[CrossRef\]](#) [\[PubMed\]](#)

90. Herrera-Cebreros, J.M.; Preciado-Rodríguez, J.M.; Robles-Parra, J.M. Impacto Económico de Las Pérdidas Postcosecha En Los Sistemas Agrícolas: El Sistema de Uva de Mesa. *Rev. Iberoam. Tecnol. Postcosecha* **2022**, *23*, 1–17.

91. Ünüşan, N. Systematic Review of Mycotoxins in Food and Feeds in Turkey. *Food Control* **2019**, *97*, 1–14. [\[CrossRef\]](#)

92. García-Nicolás, M.; Arroyo-Manzanares, N.; Viñas, P. Dispersive Magnetic Solid-Phase Extraction as a Novelty Sample Treatment for the Determination of the Main Aflatoxins in Paprika. *Toxins* **2023**, *15*, 160. [\[CrossRef\]](#)

93. Karami-Osboo, R.; Mirabolfathy, M.; Kamran, R.; Shetab-Boushehri, M.; Sarkari, S. Aflatoxin B1 in Maize Harvested over 3 Years in Iran. *Food Control* **2012**, *23*, 271–274. [\[CrossRef\]](#)

94. Veresoglou, S.D.; Barto, E.K.; Menexes, G.; Rillig, M.C. Fertilization Affects Severity of Disease Caused by Fungal Plant Pathogens. *Plant Pathol.* **2013**, *62*, 961–969. [\[CrossRef\]](#)

95. Liu, X.; Lyu, S.; Sun, D.; Bradshaw, C.J.A.; Zhou, S. Species Decline under Nitrogen Fertilization Increases Community-Level Competence of Fungal Diseases. *Proc. R. Soc. B Biol. Sci.* **2017**, *284*, 20162621. [\[CrossRef\]](#)

96. Nimsi, K.A.; Manjusha, K.; Kathiresan, K.; Arya, H. Plant Growth-Promoting Yeasts (PGPY), the Latest Entrant for Use in Sustainable Agriculture: A Review. *J. Appl. Microbiol.* **2023**, *134*, lxac088. [\[CrossRef\]](#)

97. Wang, Y.; Chen, G.; Sun, Y.; Zhu, K.; Jin, Y.; Li, B.; Wang, G. Different Agricultural Practices Specify Bacterial Community Compositions in the Soil Rhizosphere and Root Zone. *Soil Ecol. Lett.* **2022**, *4*, 18–31. [\[CrossRef\]](#)

98. Răut, I.; Călin, M.; Capră, L.; Gurban, A.M.; Doni, M.; Radu, N.; Jecu, L. Cladosporium Sp. Isolate as Fungal Plant Growth Promoting Agent. *Agronomy* **2021**, *11*, 392. [\[CrossRef\]](#)

99. Temperini, C.V.; Pardo, A.G.; Pose, G.N. Diversity of Airborne Cladosporium Species Isolated from Agricultural Environments of Northern Argentinean Patagonia: Molecular Characterization and Plant Pathogenicity. *Aerobiologia* **2018**, *34*, 227–239. [\[CrossRef\]](#)

100. Dwivedi, V.; Rath, S.K.; Jain, S.; Martínez-Argueta, N.; Prakash, R.; Saxena, S.; Rios-Solis, L. Key Insights into Secondary Metabolites from Various Chaetomium Species. *Appl. Microbiol. Biotechnol.* **2023**, *107*, 1077–1093. [\[CrossRef\]](#) [\[PubMed\]](#)

101. Mérillon, J.-M.; Ramawat, K.G. *Progress in Biological Control Plant Defence: Biological Control*; Springer: Berlin/Heidelberg, Germany, 2020; ISBN 978-3-030-51034-3.
102. Moya, P.; Pedemonte, D.; Amengual, S.; Franco, M.E.E.; Sisterna, M.N. Antagonism and Modes of Action of Chaetomium Globosum Species Group, Potential Biocontrol Agent of Barley Foliar Diseases. *Bol. la Soc. Argentina Bot.* **2016**, *51*, 569–578. [[CrossRef](#)]
103. Radhakrishnan, R.; Khan, A.L.; Kang, S.M.; Lee, I.J. A Comparative Study of Phosphate Solubilization and the Host Plant Growth Promotion Ability of Fusarium Verticillioides RK01 and Humicola Sp. KNU01 under Salt Stress. *Ann. Microbiol.* **2015**, *65*, 585–593. [[CrossRef](#)]
104. Hosseyni Moghaddam, M.S.; Safaie, N.; Soltani, J.; Pasdaran, A. Endophytic Association of Bioactive and Halotolerant Humicola Fuscoatra with Halophytic Plants, and Its Capability of Producing Anthraquinone and Anthranol Derivatives. *Antonie Van Leeuwenhoek Int. J. Gen. Mol. Microbiol.* **2020**, *113*, 279–291. [[CrossRef](#)]
105. Ibrahim, S.R.M.; Mohamed, S.G.A.; Altyar, A.E.; Mohamed, G.A. Natural Products of the Fungal Genus Humicola: Diversity, Biological Activity, and Industrial Importance. *Curr. Microbiol.* **2021**, *78*, 2488–2509. [[CrossRef](#)]
106. Waill, A.E.; Daba, G.M. Chemical and Bioactive Metabolites of Humicola and Nigrospora Secondary Metabolites. *Pharm. Pharmacol. Res.* **2022**, *5*, 1–4. [[CrossRef](#)]
107. Lee, J.; Kim, S.; Jung, H.; Koo, B.K.; Han, J.A.; Lee, H.S. Exploiting Bacterial Genera as Biocontrol Agents: Mechanisms, Interactions and Applications in Sustainable Agriculture. *J. Plant Biol.* **2023**, *66*, 485–498. [[CrossRef](#)]
108. Olanrewaju, O.S.; Babalola, O.O. Streptomyces: Implications and Interactions in Plant Growth Promotion. *Appl. Microbiol. Biotechnol.* **2019**, *103*, 1179–1188. [[CrossRef](#)] [[PubMed](#)]
109. Pacios-Michelena, S.; Aguilar González, C.N.; Alvarez-Perez, O.B.; Rodriguez-Herrera, R.; Chávez-González, M.; Arredondo Valdés, R.; Ascacio Valdés, J.A.; Govea Salas, M.; Ilyina, A. Application of Streptomyces Antimicrobial Compounds for the Control of Phytopathogens. *Front. Sustain. Food Syst.* **2021**, *5*, 696518. [[CrossRef](#)]
110. Miljaković, D.; Marinković, J.; Balešević-Tubić, S. The Significance of *Bacillus* Spp. in Disease Suppression and Growth Promotion of Field and Vegetable Crops. *Microorganisms* **2020**, *8*, 1037. [[CrossRef](#)] [[PubMed](#)]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.