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Summary

For survival, plants have to efficiently adjust their phenotype to environmental challenges, finely

coordinating their responses to balance growth and defence. Such phenotypic plasticity can be

modulated by their associated microbiota. The widespread mycorrhizal symbioses modify plant

responses to external stimuli, generally improving the resilience of the symbiotic system to

environmental stresses. Phytohormones, central regulators of plant development and immunity,

are instrumental in orchestrating plant responses to the fluctuating environment, but also in the

regulation of mycorrhizal symbioses. Exciting advances in the molecular regulation of

phytohormone signalling are providing mechanistic insights into how plants coordinate their

responses to environmental cues and mycorrhizal functioning. Here, we summarize how these

mechanisms permit the fine-tuning of the symbiosis according to the ever-changing

environment.

I. Introduction

Plants are dynamic systems able to continuously adapt to
changing environmental conditions, showing a remarkable
phenotypic plasticity. This is particularly advantageous in
heterogeneous environments where precise allocation of limited
resources between growth and defence is critical for survival
(Goh et al., 2013). In the ‘omics’ era, functional approaches have
provided evidence of the convergence of signalling pathways
regulating plant responses to developmental cues and abiotic and

biotic stress factors. They have highlighted the role of phyto-
hormones and redox signalling, and identified key regulatory
elements – molecular hubs – where multiple signalling cascades
converge (Fig. 1). The integration of multiple signals through
these hubs allows the plant to fine-tune its response to particular
conditions (Sparks et al., 2013).

Beneficial microbes can enhance plant fitness by alleviating the
effect of stress factors. They can directly remove or diminish the
stress, for example by increasing nutrient availability or antagoniz-
ing pathogens, but they can also affect plant phenotypic plasticity in
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a broad range of traits towards improved resistance or tolerance to
stress situations (Goh et al., 2013). Interestingly, plants can often
regulate their interaction with microbes according to external
conditions, promoting some over others, and even modulating
microbial behaviour (Laksmanan et al., 2014).

Among the most widespread beneficial microbe–plant asso-
ciations are the arbuscular mycorrhizas (AMs), mutualistic
symbioses established between soil fungi from the phylum
Glomeromycota and most plants. An extensive network of
fungal hyphae increases the plant’s exploratory capacity for
water and mineral nutrients, while specialized fungal structures
called arbuscules develop within root cells to facilitate nutrient
exchange between the partners (Gutjahr & Parniske, 2013). In
addition to improving plant nutrition, the symbiosis can induce
significant changes in multiple host traits, such as root
architecture, growth, flowering and stress tolerance, processes
that are all regulated by phytohormones (Ruiz-Lozano et al.,
2012; Selosse et al., 2014). AM establishment is finely
regulated, and the final outcome of the interaction is highly
context dependent (Hoeksema et al., 2010; Pineda et al., 2013).
Remarkably, nearly all phytohormones studied to date appear
to play a role in AM formation and/or functioning, although
there are still big gaps in our understanding of how they act to
integrate environmental cues and regulate mycorrhizal interac-
tions accordingly. This review presents an integrative overview
of the latest research on phytohormone-mediated regulation of
AM symbiosis in the context of ever-changing environments,
building on a wealth of earlier research on phytohormone
signalling (Pieterse et al., 2012; Vanstraelen & Benkov�a, 2012
and references therein).

II. Hormonal balance regulates plant growth and
defence

Phytohormones are small molecules that act at low concentra-
tions as versatile regulators in almost every developmental and
defence process in plants. They enable the transduction of
environmental cues into plastic responses, for instance, regulat-
ing changes in root system architecture in response to phospho-
rous (P) starvation, balancing plant growth and defence
according to light quality, or shaping the appropriate immune
response to particular attackers while modulating beneficial
interactions (Fig. 1) (reviewed in Pieterse et al., 2012; Vanstrae-
len & Benkov�a, 2012).

Far from acting independently, phytohormones interact either
synergistically or antagonistically, depending on the cellular
context. This hormone crosstalk regulates a plethora of functions,
challenging the traditional distinction between developmental –
auxins, gibberellins, brassinosteroids, cytokinins and strigolac-
tones – and stress hormones – salicylates, jasmonates, ethylene,
and abscisic acid (ABA). For example, jasmonates are crucial in
the coordination of defence responses to attackers through
interactions with the salicylate, ethylene and ABA pathways, but
they also regulate growth and development, interacting with
auxins and gibberellins (Wasternack & Hause, 2013). Similarly,
strigolactones regulate above- and below-ground plant
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Fig. 1 Integrative model describing how plants perceive and respond to
environmental cues. Perception of environmental cues alters the
concentrations of several phytohormones and other signalling compounds
(signal input). They trigger signalling cascades regulating activators/repressors
and transcription factors that can interact with each other, thus processing and
integrating themultiple signals (signal processing). Typically, the bindingof the
hormones to their receptors regulatesmaster regulators (e.g. repressor proteins
DELLA, JASMONATE ZIM DOMAIN (JAZ) and AUX/IAA, ETHYLENE
INSENSITIVE 3 (EIN3) protein and BRASSINAZOLE RESISTANT 1 (BZR1)
protein, for gibberellin, jasmonate, auxin and brassinosteroid signalling,
respectively) through post-transcriptional modifications and/or proteasome-
mediated degradation. This enables specific families of transcription factors
(e.g. ETHYLENE RESPONSE FACTORS (ERFs), ABA RESPONSIVE ELEMENT
BINDING FACTORS (ABFs), JA-related, MYC-type basic helix-loop-helix
transcription factors (MYCs), PHYTOCHROME INTERACTING FACTORS
(PIFs) and AUXIN RESPONSE FACTORS (ARFs)) to activate transcriptional
responses. Interactions among the regulators mediate pathway crosstalk, so
they act asmolecular hubs integratingmultiple signalling cascades to shape the
final response. This signal processing enables plants to flexibly respond and
adapt their phenotype to their context (signal output). The lists are not
exhaustive as only major regulators and transcription factor families are
included for clarity. Blunt-ended bars indicate negative interactions. RNS,
reactive nitrogen species; ROS, reactive oxigen species; CKs, citokinins; ABA,
abscisic acid; SLs, strigolactones; SA, salycilic acid; BR, brassinosteroids; GA,
gibberellins; ET, ethylene; JA, jasmonates; Aux, Auxin.
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architecture in interaction with auxins (Ruyter-Spira et al.,
2013), but they also modulate stress responses through interac-
tions with ABA or jasmonate signalling (Ha et al., 2014; Torres-
Vera et al., 2014).

Perception of environmental stimuli results in differential
accumulation of these phytohormones and other signal
molecules, such as small RNAs and reactive oxygen and
nitrogen species. Then, binding of the hormones to their
receptors initiates signalling cascades that involve multiple
molecular regulators, including a variety of protein activators
and repressors and transcription factors (Fig. 1). Protein–
protein interactions are instrumental for pathway interactions,
and the stability of the protein regulators, controlled by
targeted degradation through the proteasome, is a keystone in
hormone signalling (Shabek & Zheng, 2014). For example,
DELLA and JAZ proteins, key repressors of gibberellins and
jasmonate signalling, respectively, interact to integrate both
pathways to balance growth and defence. Their stability
mediates the promotion of plant defences under nonshady
conditions, but also stem and petiole elongation and reduced
disease resistance under shady conditions (Ballar�e, 2014). They
also mediate the interactions with other pathways, such as
ethylene and brassinosteroid signalling. The dose-dependent
regulation of DELLA stability by gibberellins, but also by
auxins, ethylene, light and other external signals, makes these
proteins master regulators of plant responses (Xu et al., 2014).
Downstream, several families of transcription factors are also
crucial for mediating the pathway interactions shaping the final
responses (Fig. 1) (Buscaill & Rivas, 2014). Sugars also play a
role in fine-tuning growth and defence by integrating, together
with hormones, local molecular events with systemic responses
(Ruan, 2014). Indeed, the regulation of the signal distribution
across tissues/organs is essential to achieve efficiently coordinated
systemic plant responses (Sparks et al., 2013).

III. Phytohormones control the arbuscularmycorrhizal
symbiosis

Phytohormones also interact to regulate the establishment and
functioning of the AM symbiosis (Foo et al., 2013; Bucher et al.,
2014; Gutjahr, 2014). Most evidence derives from pharmacolog-
ical or genetic approaches through the analysis of plantswith altered
hormone biosynthesis or signalling (Supporting InformationTable
S1). Some hormones control the early steps of the interaction
mediating pre-symbiotic signalling, while others regulate root
morphological adaptations to accommodate the fungus, control
the extension of fungal colonization or control symbiosis func-
tionality (Fig. 2).

Fungal and plant exudates are important in the first coloniza-
tion steps. The concentrations and structural features of the
strigolactones secreted by the plant are important for AM fungal
development (Ruyter-Spira et al., 2013), and fungal chitin
oligomers, stimulated by strigolactones, trigger the symbiotic
programme in the root (Gutjahr, 2014). Salicylates, ethylene and
cytokinins have negative effects at the fungal penetration or root
colonization steps (Fig. 2) (Foo et al., 2013). At later stages,
phytohormones also regulate arbuscule development and lifespan
(Fig. 2) (Gutjahr & Parniske, 2013). Biologically active gibber-
ellins suppress arbuscule development and, accordingly, the
DELLA repressors are essential for their formation (Floss et al.,
2013; Foo et al., 2013; Mart�ın-Rodr�ıguez et al., 2014). By
contrast, ABA and auxins positively regulate arbuscule develop-
ment and functionality (Mart�ın-Rodr�ıguez et al., 2011; Etemadi
et al., 2014), and positive and negative effects have been described
for jasmonates (Wasternack & Hause, 2013).

As in other plant processes, the impact of hormones on
mycorrhizas depends on pathway crosstalk. The mainly antagonic
interactions of ABA–ethylene and ABA–gibberellins regu-
late AM development and arbuscule formation, respectively
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Fig. 2 Phytohormone regulation of arbuscular
mycorrhiza (AM) formation and functioning.
The scheme summarizes the role of plant
hormones in different stages of mycorrhiza
development (presymbiotic, fungal hypha
branching and appresoria formation;
symbiotic, fungal colonization of the root
cortex and arbuscule formation and
functioning). Positive and negative effects are
illustrated by arrows and blunt-ended bars,
respectively, and dashed lines indicate
interactions suggested to play a role in AM
regulation. Multiple functions can be
envisaged for a particular hormonal group
and, conversely,multiple hormones interact to
fine-tune particular functions. ABA, abscisic
acid; Aux, auxins; BR, brassinosteroids; CKs,
cytokinins; ET, ethylene; GA, gibberellins; JA,
jasmonates; SA, salicylic acid; SLs,
strigolactones.
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(Mart�ın-Rodr�ıguez et al., 2011; Gutjahr, 2014). Elements of sugar
signalling also interact with jasmonates and brassinosteroids to
finely modulate mycorrhizas (Bitterlich et al., 2014). Thus, it is
likely that the molecular hubs in hormone crosstalk integrate
external and developmental cues with symbiotic programmes
during mycorrhiza formation (Gutjahr, 2014). Accordingly, the
gibberellin–DELLA complex may play a pivotal role in the control
of the symbiosis according to the physiological status of the plant
under particular environmental conditions.

As in plant–pathogen interactions, mycorrhizal fungi have
evolved strategies to manipulate host signalling to promote
colonization throughthe secretionofproteineffectors.Remarkably,
the only functional secreted effectors characterized to date in
mycorrhizal fungi target phytohormone signalling hubs. SP7
(Secreted Protein 7), secreted by the AM fungus Rhizophagus
irregularis, interacts with an ETHYLENE RESPONSE FACTOR
(ERP) to suppress ethylene signalling (Kloppholz et al., 2011) and
MiSSP7 (Mycorrhiza induced small secreted protein 7) from the
ectomycorrhizal fungusLaccaria bicolor stabilizes a JAZ repressor of
jasmonate signalling (Plett et al., 2014). As a larger repertoire of
fungal effectors has been predicted, it is likely that different effectors
may target different host signalling processes at specific stages of
mycorrhizal interactions.

IV. Environmental conditions have an impact on the
partner’s interactions

The plant–AM fungus relationship varies with multiple factors
including the partners’ genotypes and their biotic context,
successional stages, light intensity and nutrient availability
(Hoeksema et al., 2010). The effects of nutrient availability and
plant nutritional status on the symbiosis are the best studied, and
the involvement of phytohormones is well established. P deficiency
promotes the symbiosis by increasing strigolactone biosynthesis
and reducing shoot cytokinin signalling to the root, thereby
favouringmycorrhiza formation (Cosme&Wurst, 2013; Fusconi,
2014). By contrast, poor development of arbuscules is observed
under high-P conditions, probably associated with the destabili-
zation of DELLAs (Floss et al., 2013). A stimulatory effect of
nitrogen (N) deficiency on AM symbiosis has also been reported,
although its effect seems to be generally weaker than that of P
deficiency (Nouri et al., 2014). As for P, promotion of strigolac-
tones by N deprivation has been reported (Ruyter-Spira et al.,
2013). Conversely, strigolactone biosynthesis is reduced in well-
established mycorrhizas, maybe as a consequence of a better
nutritional status or autoregulation mechanisms of the host aiming
to prevent over-colonization (L�opez-R�aez et al., 2015). The
concentrations of other essential mineral nutrients such as iron,
potassium and calcium do not appear to affect mycorrhiza
formation (Nouri et al., 2014).

Water-related stresses such as drought and salinity also affect AM
symbiosis. Experimental data do not support a general increase in
AM colonization under such conditions, but mycorrhizal plants
perform better (Ruiz-Lozano et al., 2012; Aroca et al., 2013). ABA
regulation in response to these stresses is altered in mycorrhizal
roots and an increase in strigolactone production under salinity has

been reported in the presence of AM fungi (Aroca et al., 2013).
Thus, stress-induced ABA and strigolactonesmay actively promote
AM function.

The biotic context also influences mycorrhizas. Multiple direct
interactions occur in the rhizosphere, but plant-mediated effects of
above-ground communities on AM have also been described.
Phloem-feeding aphids and early season herbivory reduce AM
fungal colonization, although reports of increases also exist (Barto&
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Fig. 3 Phytohormones as mediators of the context dependence of
mycorrhiza establishment and function. Plants adjust their phenotype
according to nutrient availability, light, and other abiotic and biotic factors
through precise spatio-temporal signalling regulation. Phytohormone
networks integrate plant responses to the different cues and mycorrhiza
formation and function. Hormone homeostasis has an impact on, and is
impacted by, the mycorrhizal symbiosis. Thus, the phytohormone signalling
hubs may allow the plant to orchestrate the symbiosis according to its
physiological needs under particular environmental conditions, andmediate
the fine-tuning of the plant responsebymycorrhizas.Holistic approaches are
required to understand the contribution of phytohormone signalling to the
context dependence of mycorrhizal interactions and the effects of the
symbiosis on plant adaptation to the ever-changing environments. ABA,
abscisic acid;Aux, auxins;BR,brassinosteroids;CKs, cytokinins; ET, ethylene;
GA, gibberellins; JA, jasmonates; SA, salicylic acid; SLs, strigolactones.
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Rillig, 2010; Babikova et al., 2014). The plant, and the type and
frequencyofherbivoryseemtobedeterminantsof thefinaloutcome.
Although host carbon (C) limitation or reallocation may explain
some of the patterns, meta-analyses challenge the C limitation
hypothesis, suggesting the contributionofothermechanisms (Barto
& Rillig, 2010). As shoot herbivory alters root-hormone profiles
(Fragoso et al., 2014), these changesmay contribute to the effects on
AM. Evidence of systemic signalling in mycorrhizas exists, such as
wounding of Medicago leaves resulting in jasmonate-mediated
promotion of AM colonization (Landgraf et al., 2012).

V. Mycorrhizal symbiosis alters hormone
homeostasis in the host and its response to
environmental challenges

Phytohormone homeostasis is altered in mycorrhizal plants, and
this alteration has been associated with their enhanced tolerance to
stresses (Fern�andez et al., 2014; Selosse et al., 2014). Arbuscular
mycorrhizal formation changes root architecture which is impor-
tant for anchoring, water and nutrient uptake, plant associations
and stress tolerance. Root architecture is regulated by the concerted
action of cytokinins, auxins and strigolactones, whose concentra-
tions are altered inmycorrhizas (Fusconi, 2014). The symbiosis can
also alter root hydraulic properties, regulated by ABA, increasing
plant water uptake under unfavourable conditions (Ruiz-Lozano
et al., 2012). Although under nonstress conditions ABA concen-
trations may be unaltered or even lower in mycorrhizal plants,
under osmotic stress the increase in ABA content is higher in these
plants, and is likely to lead to primed stress responses (Aroca et al.,
2013). In plants with ectomycorrhizas both ABA and salicylate
pathways are primed, increasing host tolerance to abiotic stresses
(Luo et al., 2009). In addition, AMs can alter the outcome of
interactions between plants and other organisms. They can
promote resistance against a wide range of soil- and air-borne
deleterious organisms, including herbivorous insects and patho-
gens, and they can even affect other trophic levels, such as the
natural enemies of herbivores (Jung et al., 2012). Among the
underlyingmechanisms, improved plant nutrition, changes in root
architecture and priming of plant immunity are all regulated by
phytohormones to some extent (Jung et al., 2012). Here, priming
of jasmonate-dependent defences is crucial, not only within
individual plants, but even between plants connected through
common mycorrhiza mycelial networks (Song et al., 2014)

VI. Conclusions and outlook

We are just beginning to understand the complexity of phytohor-
mone regulation in plant physiology. Studies of individual stimuli
in model systems have been instrumental to understand the precise
regulation of particular plant responses. However, plants are
simultaneously exposed tomultiple cues and stress factors, and they
need to prioritize responses for efficient resourcemanagement. The
latest research is now uncovering the multiple molecular connec-
tions that coordinately mediate phytohormone crosstalk for signal
integration, and how their spatial and temporal regulation permits
the fine-tuning of the response (Xu et al., 2014).

Phytohormone homeostasis also regulates, and is regulated by,
AM symbiosis. Changes in host hormone profiles in response to
environmental cues (nutrient availability, abiotic stresses and biotic
interactions) may translate into changes in the colonization process
or efficiency. Conversely, AM symbiosis can alleviate plant stress
under unfavourable conditions, at least in part, by altering host
hormonal homeostasis (Fig. 3). Thus, recent discoveries regarding
theprecise regulationofphytohormonesignallingprovidenewclues
to the molecular basis of the contribution of mycorrhizas to plant
resilience to environmental challenges, and to the context depen-
dence of mycorrhizal effects in ecological or agricultural settings.
Many questions remain unanswered (Box 1), but future research
shouldallowus tounderstandtheprecisemolecular regulationof the
symbiosis under natural conditions.Models that integratemultiple
responses, tissues and scalesmust be used in order to understand the
roles of phytohormones in mycorrhizal regulation and their
contribution to the functioning of ecosystems (Fig. 3).

Deciphering how phytohormones act and interact and charac-
terizing newplayers in signalling networks are crucial to understand
how plants, in close interaction with their symbionts, thrive and
survive in changing environments. This knowledge should also
contribute to improving strategies to optimize plant symbioses and
their adaptation to adversity.
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