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   Chapter 9   
 Priming Plant Defence Against Pathogens 
by Arbuscular Mycorrhizal Fungi       

     María J.   Pozo,       Adriaan   Verhage  ,     Javier   García-Andrade,       Juan M.   García,   
and     Concepción   Azcón-Aguilar      

  Abstract   Root colonisation by arbuscular mycorrhizal fungi (AMF) can improve 

plant resistance/tolerance to biotic stresses. Although this bioprotection has been 

amply described in different plant systems, the underlying mechanisms remain 

largely unknown. Besides mechanisms such as improved plant nutrition and 

competition, experimental evidence supports the involvement of plant defence 

mechanisms in the observed protection. During mycorrhiza establishment, modu-

lation of plant defence responses occurs upon recognition of the AMF in order to 

achieve a functional symbiosis. As a consequence of this modulation, a mild, but 

effective activation of the plant immune responses may occur, not only locally 

but also systemically. This activation leads to a primed state of the plant that 

allows a more efficient activation of defence mechanisms in response to attack by 

potential enemies.    

  9.1 Introduction  

 Mutually beneficial interactions between plants and microbes are frequent in 

nature. Common benefits for the plant are improved plant nutrition and/or increased 

capability to cope with adverse conditions. In the case of arbuscular mycorrhizal 

(AM) associations, the symbioses alter plant physiology, leading to a better mineral 

nutrition and to increased resistance/tolerance to biotic and abiotic stresses. 

Although it should be noted that the ability to enhance plant resistance/tolerance 

differs among AM fungal isolates and can be modulated by environmental condi-

tions, general trends emerge from the multiple studies dealing with mycorrhiza-

induced resistance in different pathosystems. Enhanced resistance/tolerance to 

soil-borne pathogens has been widely reported in mycorrhizal plants (Whipps 

 2004) . Although it is clear that the symbiosis may also impact plant interactions 
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with aboveground attackers, the outcome of those interactions is less clear and 

seems to depend largely on the attacker lifestyle (Pozo and Azcón-Aguilar,  2007) . 

This finding points to a differential regulation of plant defence signalling pathways. 

In this chapter, we summarise the information available regarding mycorrhiza-

induced resistance (MIR) with special emphasis on the involvement of plant 

defence mechanisms.  

  9.2 Mycorrhiza-Induced Resistance Against Pathogens  

 Most studies on protection by AM against soil-borne diseases report reductions in 

incidence and/or severity of root rot or wilting caused by fungi such as  Rhizoctonia , 

 Fusarium  or  Verticillium , and root rot caused by oomycetes including  Phytophthora , 

 Pythium  and  Aphanomyces . A comprehensive review of these studies was compiled 

by Whipps  (2004) . Similarly, a reduction in deleterious effects caused by parasitic 

nematodes, such as  Pratylenchus  and  Meloidogyne , is common in mycorrhizal 

plants (de la Peña et al.  2006 ; Li et al.  2006) . Because of the common localisation 

in the root of both attackers and AM fungi, it is generally difficult to discern the 

local or systemic character of the protection. However, the use of split-root experi-

mental systems, allowing physical separation between AM fungi (AMF) and patho-

gens, has revealed reductions in pathogen infection and in disease symptoms in the 

non-mycorrhizal parts of root systems of mycorrhizal plants. Systemic protection 

at the root system level has been demonstrated against  Phytophthora  and  Ralstonia  

in tomato (Cordier et al.  1998 ; Pozo et al.  2002 ; Zhu and Yao  2004) ,  Gaeumannomyces  

in wheat (Khaosaad et al.  2007)  and recently against plant parasitic nematodes in 

banana plants (Elsen et al.  2008) . Such effectiveness against a diverse range of 

attackers, including nematodes, oomycetes, bacteria and fungi, confirms the broad 

spectrum character of the induced resistance associated with the AM symbiosis. 

 Information about mycorrhizal effects on aboveground diseases is scarce and 

apparently less conclusive. Early reports associated AM symbioses with enhanced 

susceptibility to viruses (see Whipps  2004  for review). In line with those studies, it 

was proposed that mycorrhizal plants are more susceptible to shoot pathogens 

(Shaul et al.  1999) . However, recent studies dealing with pathogens of different 

lifestyles have reported a more complex reality. Biotrophic pathogens, such as 

powdery mildew and rust fungi ( Blumeria ,  Oidium ,  Uromyces ), seem to perform 

better in mycorrhizal plants, although increased tolerance was often observed in 

terms of plant mass and yield (Gernns et al.  2001 ; Whipps  2004) . Concerning 

hemibiotrophs, the impact of the symbiosis varies from no effect to reduction of the 

disease, for example against  Colletotrichum orbiculare , the causal agent of anthra-

cnose in cucumber (Lee et al.  2005 ; Chandanie et al.  2006) . Finally, several studies 

have observed a positive effect of the symbiosis on plant resistance to other shoot 

pathogens. In tomato, AM reduced disease symptoms caused by a phytoplasma and 

conferred protection against the necrotrophic fungus  Alternaria solani  (Lingua 

et al.  2002 ; Fritz et al.  2006 ; de la Noval et al.  2007) . Similarly, colonisation by 
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 Glomus mosseae  reduces disease symptoms and proliferation of  Pseudomonas syrin-
gae  in tomato leaves (J. García-Andrade and M.J. Pozo, unpublished results). Liu and 

coworkers have recently shown increased resistance of mycorrhizal  Medicago  to the 

shoot bacterial pathogen  Xanthomonas campestris  (Liu et al.  2007) .  

  9.3 Effects of AM Symbioses on Phytophagous Insects  

 Interaction with herbivorous insects is also altered in mycorrhizal plants, as the 

symbiosis has an impact on the growth and/or survival of those insects. Again, 

while the symbiosis consistently reduces attacks by root-feeding insects, effects on 

foliar-feeding ones are more variable. A detailed analysis of published studies 

allowed Gange  (2006)  to reach important conclusions, despite the diversity in 

experimental approaches and systems analysed. In general, AM reduce the inci-

dence of generalist chewing insects, while sap-feeding or specialist insects show 

increases in performance on mycorrhizal plants (Gange  2006) . Such a pattern may 

indicate that the final outcome of the interaction is largely determined by the insect 

lifestyle and the degree of specialisation. While generalist insects are sensitive to 

plant defence mechanisms, specialist herbivores are likely to be able to circumvent 

the defences of their host plant and remain undetected. As a result, generalists may 

be affected by the enhanced defence capacity of mycorrhizal plants, while specia-

lists will circumvent the defences and may benefit from improved nutritional status 

of the mycorrhizal host plant. Despite these general trends, the outcome depends on 

the plants and organisms involved in each specific interaction. For example, 

although several works reported increased performance of sap-feeding insects in 

mycorrhizal plants (Gange  2006) , colonisation by  G. mosseae  significantly reduced 

the performance of potato aphids in tomato (Guerrieri et al.  2004) . The scheme in 

Fig.  9.1  summarises the general effects of AM on different plant attackers.   

  9.4 Mechanisms of Mycorrhiza Induced Resistance  

 There is experimental evidence that plant protection by AM results from a combi-

nation of mechanisms acting at different levels (Azcón-Aguilar and Barea  1996) . 

The most widely accepted mechanisms to explain mycorrhiza-induced protection 

are the improvement of plant nutrition and the compensation by the symbiosis of the 

damage caused by the pathogen. However, studies including nutrient-supplemented 

controls have shown that mycorrhizal effects cannot be regarded as a mere conse-

quence of improved phosphorus nutrition (Shaul et al.  1999 ; Fritz et al.  2006 ; Liu 

et al.  2007) . Another important factor is competition between AMF and pathogens 

for photosynthates and, in the case of root pathogens, for colonisation sites (Cordier 

et al.  1998) . Mycorrhizal establishment also induces changes in root system 

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

Azcon_Ch09.indd   3Azcon_Ch09.indd   3 10/14/2008   5:45:37 AM10/14/2008   5:45:37 AM



4 M.J. Pozo et al.

BookID 157289_ChapID 9_Proof# 1 - 12/10/2008

  Fig. 9.1    Spectrum of efficiency of mycorrhiza-induced resistance (MIR). AM symbioses 

generally reduce incidence and/or damage caused by soil-borne pathogens, nematodes and 

root-chewing insects ( bottom ). The protection results from the combination of local and systemic 

mechanisms (represented by a  double arrow ). In aboveground tissues, MIR is effective against 

necrotrophic pathogens and generalist chewing insects ( left ). Indirect defence responses are 

also enhanced: parasitoids are more attracted by volatiles released by AM plants. Viral and 

fungal biotrophs, as well as phloem-feeding insects, perform better on mycorrhizal plants 

( right ).  Solid  and  open arrows  indicate increased resistance or susceptibility, respectively, of 

mycorrhizal plants. Drawing by J. Perez-Tienda. Reproduced with permission from Pozo and 

Azcón-Aguilar  (2007)        
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architecture and morphology. These changes may alter the dynamics of infection 

by the pathogen, although direct evidence for such a correlation is lacking. An 

additional level of complexity is the fact that mycorrhization determines important 

changes in rhizosphere microbial populations, and these changes may lead to the 

stimulation of components of the microbiota with antagonistic activity toward cer-

tain root pathogens (Barea et al.  2005) . Finally, the contribution of plant defence 

mechanisms has been highlighted in different studies, and this will be the main 

focus of this chapter. 

 As mentioned above, several of these mechanisms may be operative simultane-

ously, with individual contributions depending on environmental conditions, timing 

of the interaction and partners involved (Azcón-Aguilar and Barea  1996 ; Whipps 

 2004) . A key factor in the induction of resistance seems to be the extension of root 

colonisation by AMF. Studies comparing different mycorrhizal colonisation levels 

conclude the requirement of a well-established AM symbiosis for local and sys-

temic induced resistance (Slezack et al.  2000 ; Khaosaad et al.  2007) . However, 

there are reports on biocontrol of pathogens in non-AM species by co-culture with 

mycorrhizal plants. Whether this effect is related to induced resistance or to micro-

bial interactions in the soil remains to be elucidated (St-Arnaud et al.  1997) .  

  9.5  Modulation of Plant Defence Responses 
in Mycorrhizal Plants  

 During interactions with microorganisms, plants are able to recognise microbe-derived 

molecules and tailor their defence responses according to the type of micro-organism 

encountered. The molecular dialogue established between both partners will determine 

the final outcome of the relationship, ranging from parasitism to mutualism, usually 

through highly coordinated cellular processes (Bais et al.  2004 ; Pozo et al.  2005 ; 

see   Chapter 2     by Provorov and Vorobyov). A tight control in the regulation of plant 

defence mechanisms appears to be a key aspect in AM fungal colonisation and 

compatibility with the host (Gianinazzi-Pearson  1996) . Remarkably, a correlation 

between mycorrhiza-induced protection and the ‘autoregulation of mycorrhization’ 

has been proposed (Vierheilig et al.  2008) . The autoregulation is manifested as a reduc-

tion in root colonisation by AMF once plants are already mycorrhizal. Mechanisms 

operating in such autoregulation may also impact plant interactions with pathogenic 

fungi (Vierheilig et al.  2008) . 

 There is evidence for the accumulation of defensive plant compounds related to 

mycorrhization, although to a much lower extent than in plant–pathogen interac-

tions (Gianinazzi-Pearson et al.  1996) . Accumulation of reactive oxygen species, 

activation of phenylpropanoid metabolism and accumulation of specific isoforms 

of hydrolytic enzymes such as chitinases and glucanases has been reported in 

mycorrhizal roots. However, these reactions are generally localised, suggesting a 

role in AM establishment or control of the symbiosis (Dumas-Gaudot et al.  2000 ; 
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García-Garrido and Ocampo  2002 ; Pozo et al.  2002) . It should be noted that the 

pattern of PR protein accumulation and the expression of defence-related genes 

varies during interactions with different AMF (Pozo et al.  1999 ; Pozo et al.  2002 ; 

Gao et al.  2004) . 

 Concerning aboveground effects, transcriptional regulation of defence-related 

genes and accumulation of insect antifeedant compounds have been reported in 

shoots of mycorrhizal plants (Gange  2006 ; Liu et al.  2007) . Liu and co-workers 

 (2007)  described a complex pattern of changes in gene expression in roots and 

shoots associated with mycorrhizal colonisation in  Medicago truncatul a. 

Defence-related genes were among those with altered expression levels, and the 

authors correlated that finding with increased resistance to shoot pathogens. 

Furthermore, the volatile blends released by AM plants can be more attractive to 

aphid parasitoids than those from non-mycorrhizal ones, as shown in tomato 

plants (Guerrieri et al.  2004) . These results indicate that not only direct, but also 

indirect, plant defence mechanisms may be modulated in mycorrhizal plants. 

There is also evidence for systemic repression of plant defence associated with 

AM symbioses: a delay in the accumulation of PR proteins in response to some 

defence-related stimuli has been observed in mycorrhizal tobacco (Shaul et al. 

 1999 ; Dumas-Gaudot et al.  2000) . Altogether, experimental evidence confirms 

the systemic modulation of plant defence in AM. This modulation may explain 

the pattern of enhanced resistance/susceptibility of mycorrhizal plants to 

diverse pests on the basis of the different signalling pathways involved in the 

plant response to particular attackers. In addition, it would explain the fact that 

AM can modulate the effectiveness of chemically-induced plant resistance 

(Sonnemann et al.  2005) .  

  9.6 Priming of Defence Mechanisms in Mycorrhizal Plants  

 With the exception of the limited activation of plant defence discussed above, a 

direct activation of defences has not been observed in mycorrhizal plants. This 

contrasts with the systemic acquired resistance (SAR) triggered in plants after 

infection with necrotising pathogens. Indeed, systemic accumulation of PR proteins, 

salicylic acid or expression of marker genes associated with SAR has not been 

reported in tissues of mycorrhizal plants. This is also the case for systemic resis-

tance achieved after colonisation by other beneficial organisms, such as certain 

rhizobacteria and other beneficial fungi (Van Wees et al.  2008) . Despite the vital 

character of defence responses, constitutive expression of defence is too costly for 

the plant. Thus, beneficial micro-organisms have developed the ability of enhanc-

ing resistance not through a direct activation of defence, which would be too expen-

sive for the plant in the absence of challenging attackers, but through priming of the 

defence mechanisms. 
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 Molecular studies have confirmed that quantitative, rather than qualitative, differ-

ences in the defence mechanisms determine plant resistance or susceptibility to a 

pathogen (Nimchuk et al.  2003) . Indeed, a rapid and strong activation of defence 

mechanisms is crucial for success in controlling attackers. Accordingly, precondition-

ing of plant tissues for a quick and more effective activation of defence upon attack has 

important ecological fitness benefits and seems to be a common feature of the plant’s 

immune system (Conrath et al.  2006) . This boost of basal defences, known as priming, 

seems to be successfully triggered by certain beneficial micro-organisms (Pozo et al. 

 2005 ; Van Wees et al.  2008) , including AMF (Pozo and Azcón-Aguilar  2007) . 

 Several studies point to priming as a main mechanism operating in MIR, indi-

cated by stronger defence reactions triggered in the mycorrhizal plant upon attack. 

Mycorrhizal transformed carrot roots displayed stronger defence reactions at chal-

lenge sites by  Fusarium  (Benhamou et al.  1994) . Mycorrhization also amplified the 

accumulation of the phytoalexins rishitin and solavetivone in  Rhizoctonia -infected 

potato plantlets, while AMF themselves did not alter the levels of these compounds 

(Yao et al.  2003) . Priming for callose deposition seems to be the mechanism 

involved in the protection achieved by  G. intraradices  against  Colletotrichum  in 

cucumber (Lee et al.  2005) . Furthermore, colonisation by AMF systemically protects 

root systems. This was first illustrated for tomato plants against  Phytophthora 
parasitica  infection (Cordier et al.  1998 ; Pozo et al.  2002) . Only mycorrhizal 

plants formed papilla-like structures around the sites of pathogen infection in 

non-mycorrhizal regions with deposition of non-esterified pectins and callose, 

preventing the pathogen from spreading further, and they accumulated significantly 

more PR-1a and basic  b -1,3 glucanases than non-mycorrhizal plants upon 

 Phytophthora  infection (Cordier et al.  1998 ; Pozo et al.  1999 ; Pozo et al.  2002) . 

Mycorrhizal protection of grapevine roots against  Meloidogyne incognita  has also 

been associated with primed expression, ubiquitously throughout the whole root 

system, of a chitinase gene,  VCH3 , in response to the nematode (Li et al.  2006) . 

These different observations illustrate that primed responses are not restricted to 

AMF colonised areas, but they occur in the whole root system. 

 To investigate whether mycorrhizal colonisation leads to systemic priming of 

defence in aerial tissues, we compared the response of non-mycorrhizal plants or 

plants colonised by either  G. mosseae  or  G. intraradices  to the application in the 

shoots of different defence-related stimuli. Gene expression and enzymatic activi-

ties were monitored in a time course experiment after shoot treatment with jas-

monic acid (JA), ethylene (ET) or salicylic acid (SA). Transcript profiling of leaves 

of mycorrhizal and non-mycorrhizal plants 24 h after treatment with JA revealed a 

stronger induction in mycorrhizal plants, particularly in  G. mosseae  colonised 

plants, of JA-regulated genes, including typical defence-related JA responsive 

genes such as those coding for proteinase inhibitors (Fig.  9.2 ; A. Verhage and 

M.J. Pozo, unpublished results). Our results show different defence-related gene 

regulation patterns in mycorrhizal plants, and point to a prominent role of priming 

for JA-dependent responses in AM-induced resistance.   
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  9.7  Signalling Pathways Involved in Mycorrhiza Priming 
of Defence  

 Plant defence mechanisms are tightly regulated through an interconnected network 

of signalling pathways in which JA, ET and SA play major roles. Priming is often 

manifested as a sensitisation of the tissues to one or some of the signalling mole-

cules (Conrath et al.  2006) . Salicylic acid coordinates defence mechanisms are 

generally effective against biotrophic pathogens, whereas JA regulates wounding 

responses and resistance against necrotrophs (Ton et al.  2002 ; Glazebrook  2005) . 

Nevertheless, there is some overlap in their spectrum of efficiency, especially 

concerning pathogens with intermediate lifestyles (Thaler et al.  2004 ; Pozo et al. 

 2005) . Insect feeding guilds also determine the response they trigger in the plant. 

Generalist chewing insects, but not phloem-feeding ones, cause wounding and 

trigger JA-regulated responses (Heidel and Baldwin  2004 ; De Vos et al.  2005) . These 

signalling pathways are not independent: intensive interactions ranging from 

synergism to antagonism shape a complex regulation network, in which trade-offs 

Gi GmNm Gi+JA Gm+JANm+JA

Pin ll

PPO

TMC 

  Fig. 9.2    Primed expression of JA-responsive genes in mycorrhizal plants. Induction of gene 

expression in tomato leaves upon treatment with methyl jasmonate ( +JA ) as a defence inducer was 

compared in non-mycorrhizal ( NM ) and mycorrhizal plants colonised by either  Glomus mosseae  

( Gm ) or  G. intraradices  ( Gi ). Transcriptomic analysis was performed using Affymetrix GeneChip ®  

tomato Arrays, including probe sets for about 10,000 tomato genes. The heat map depicts a clus-

ter of JA responsive genes with primed expression in mycorrhizal plants, including those coding 

for the defence-related tomato proteins multicystatin ( TMC ), polyphenol oxidase ( PPO ) and 

proteinase inhibitor II ( PIN II ). The expression values are represented following the colour scale 

on the left, ranging from blue (low expression level) to red (high expression level). Note that primed 

expression upon treatment was more pronounced in  G. mosseae  ( Gm+JA ) than in  G. intraradices  

( Gi+JA ) colonised plants       
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between SA and JA pathways are well documented (Bostock  2005 ; Beckers and 

Spoel  2006 ; Koornneef and Pieterse  2008) . 

 As obligate biotrophs, AMF share similarities with biotrophic pathogens 

(Paszkowski  2006) . Coherently, transcriptional profiling comparing plant responses 

during interactions with AM and pathogenic fungi showed that plant responses to 

AMF overlap more with those induced by the hemibiotroph  Magnaporthe grisea  

than with those by the necrotroph  Fusarium moniliforme  (Güimil et al.  2005) . 

Thus, AMF sensitivity to SA-regulated defences is likely. Indeed, exogenous SA 

application delays mycorrhizal colonisation, and plant mutants altered in endog-

enous SA levels point to a role of this pathway in the control of the AM symbiosis 

(García-Garrido and Ocampo  2002) . It is plausible that AMF partially repress 

SA-dependent defence responses in the host in order to achieve a compatible inter-

action. A suppression of SA responses is also necessary for the establishment of 

the  Rhizobium –legume symbiotic association (Stacey et al.  2006) . In the case 

of mycorrhizal plants, such attenuation could explain the delay in systemic accu-

mulation of PR proteins upon treatment with SA or analogs (Shaul et al.  1999 ; 

Dumas-Gaudot et al.  2000)  and the reported enhanced susceptibility of mycorrhizal 

plants to viruses and certain biotrophic pathogens (Pozo and Azcón-Aguilar  2007) . 

How would attenuation of plant defence fit with the widespread and mutualistic 

character of AM associations? A possible explanation may be by compensation via 

other defence signalling pathways. 

 A symbiotic program has to be activated in the host plant to achieve a successful 

mutualistic interaction upon recognition of the AM fungal partner (Reinhardt  2007) . 

This program should allow a redistribution of nutrients and active physical accom-

modation of the fungal symbiont inside root cells (Genre et al.  2005) . Both aspects 

may be regulated by jasmonates (Hause et al.  2007) . Roots of mycorrhizal plants are 

associated with higher levels of endogenous JA as compared to non-mycorrhizal 

ones. The increase occurs after the onset of mycorrhization, and is probably related 

to fully established mycorrhizas (Hause et al.  2002) . Elevated levels of basal JA 

production could be related to the increased resistance of mycorrhizal plants to 

certain pathogens and insects. In line with this hypothesis, experimental evidence 

linking the JA pathway to primed deposition of callose and enhanced resistance to 

oomycetes (Hamiduzzaman et al.  2005)  argues for a role of JA signalling in the primed 

papillae formation observed in mycorrhizal tomato root systems upon infection with 

 Phytophthora  (Cordier et al.  1998) . Recently, a central role for JA in systemic immu-

nity has also been proposed in  Arabidopsis  (Truman et al.  2007) . It is tempting to 

speculate that JA also serves as endogenous signal in MIR. 

 It is noteworthy that parallels exist between rhizobacteria and mycorrhiza-

induced resistance. Like MIR, rhizobacteria-mediated ISR is mainly effective 

against necrotrophic pathogens and is based on priming of JA regulated responses 

(Verhagen et al.  2004) . ISR by other beneficial organisms also seems to be associ-

ated with priming of JA-inducible responses (Pozo et al.  2005 ; Van Wees et al. 

 2008) . Thus, modulation of plant defence mechanisms and conditioning of plant 

tissues for a more efficient activation of JA responses may be a common feature of 

beneficial interactions. 
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 In summary, we propose that a functional mycorrhiza implies partial suppression of 

SA-dependent responses in the plant, compensated by an enhancement of those that 

are JA-regulated. This would result in priming of JA-dependent defence mechanisms 

(Pozo and Azcón-Aguilar  2007) . Experimental evidence supports such a hypothesis: 

AM induced systemic protection against take-all disease is independent of systemic 

accumulation of salicylic acid (Khaosaad et al.  2007) , and AM symbiosis primes 

tomato plants for a stronger activation of JA-dependent defence responses (Fig.  9.2 ). 

This defence regulation model is coherent with the spectrum of effectiveness described 

for MIR: increased susceptibility to biotrophs, and increased resistance to necrotrophs 

and generalist chewing insects (summarised in Fig.  9.1 ).  

  9.8 Conclusions  

 Mycorrhizal symbioses have an important impact on plant interactions with patho-

gens and insects. The association generally leads to reduction of damage caused by 

soil-borne pathogens, but effects on shoot-targeting organisms depend greatly on the 

attacker lifestyle. Mycorrhiza-induced resistance (MIR) in aboveground tissues 

seems effective against necrotrophic pathogens and generalist chewing insects, but 

not against biotrophs. Instead of constitutive activation of plant defence, MIR is 

associated with priming for an efficient activation of defence mechanisms upon 

attack. The spectrum of MIR efficiency correlates with a potentiation of JA-dependent 

plant defences. This low-cost type of induced resistance may be among the reasons 

to explain why root associations with AMF have been conserved during evolution 

and are widespread among plant species. 

 There is growing awareness about the importance of soil microbiota in natural and 

man-made ecosystems. Indeed, progresses in basic knowledge of plant interactions 

with mycorrhizal fungi, identification of markers associated with induced resistance, 

as well as the generation of predictive models for the outcome of particular interac-

tions, may have important practical implications regarding the effectiveness of AMF 

in the biological control and integrated management of pests and diseases.      
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