|
Plant Signaling & Behavior 8:1, e22785; January 2013; © 2013 Landes Bioscience

SHORT COMMUNICATION

Tomato strigolactones
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Strigolactones are plant signaling molecules that induce germination of parasitic plant seeds, initiate host plant -
arbuscular mycorrhizal fungus symbiosis and act as plant hormones controlling shoot branching and root architecture. To
date four unique strigolactones (e.g., orobanchol, didehydroorobanchol isomers 1 and 2 and the aromatic strigolactone
solanacol) have been reported in the root exudates and extracts of tomato (Solanum lycopersicum). Here we report
on the presence of several additional strigolactones in tomato root exudates and extracts, orobanchyl acetate, two
7-hydroxyorobanchol isomers, 7-oxoorobanchol and two additional didehydroorobanchol isomers and discuss their

possible biological relevance.

Strigolactones are plant hormones involved in the regulation of
above and below ground plant architecture'? and rhizosphere
signaling®> and have been identified in many plant species.®'
Strigolactones are derived from carotenoids' and therefore
belong to the chemical class of the apocarotenoids. The strigo-
lactone chemical structure consists of four rings (ABCD), with
a tricyclic lactone (ABC part) and butenolide group (D-ring)
connected by a characteristic enol ether bridge (Fig. 1A). It has
been reported that this enol ether bridge is not only essential for
parasitic seed germination,'>" but is also required for the induc-
tion of AM branching' and their hormonal activity in planta.”
Although the main structure of strigolactones is rather similar,
their A- and B-ring decoration and stereochemistry can vary
substantially (Fig. 1B).>'® It is clear that different functional
groups and stereochemistry lead to different biological specific-

ity in strigolactones.>!*1¢

7 We recently reported on the role of
orobanchol, solanacol, and two putative didehydroorobanchol
isomers in tomato.' In this addendum we report the presence
of several additional strigolactones in tomato and discuss their
possible biological relevance.

Tomato plants were grown under controlled conditions,
their exudates collected, purified and analyzed as previ-
ously described.”®" All strigolactones previously reported

in tomato”?’

were present in the samples analyzed (Fig. 2A).
In addition, orobanchyl acetate was also detected in tomato
root exudates and its identity confirmed by comparison with

an authentic standard (Figs. 2B and 3A). Orobanchyl acetate
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was recently detected in the xylem sap of tomato,'® but its pres-
ence in root exudates has not been reported before. In addition,
7-oxoorobanchol and two 7-hydroxyorobanchol isomers were
detected in purified tomato exudates (Fig. 2A and C). The rela-
tively low levels (based on MS signal intensities) of these strigo-
lactones is likely the reason why they have not been detected
before in crude tomato root exudates.

The compound eluting at RT 3.75 min was identified as
7-oxoorobanchol, based on comparison of its RT and MS/
MS fragmentation spectra with that of an authentic 7-oxooro-
banchol standard® (Figs. 2C and 3B). The RT of 2.57 min
(Fig. 2C) of one of the putative 7-hydroxyorobanchol isomers,
as well as its MS/MS fragmentation spectrum obtained at col-
lision energies of>'*52° and 25 eV were identical to those of
an authentic 7a-hydroxyorobanchol standard (kindly provided
by K. Yoneyama) (Fig. 3C, data not shown) and similar to an
authentic 7a-hydroxyorobanchyl acetate standard (Fig. 3C),
identifying this compound as 7a-hydroxyorobanchol. The
MS/MS fragmentation spectrum of the less polar 7-hydroxy-
orobanchol isomer (RT 3.09 min, Fig. 2C) was very simi-
lar to that of the authentic 7a-hydroxyorobanchol (Fig. 3C)
and 7B-hydroxyorobanchyl acetates standards 16 (data not
shown). Therefore, this compound is tentatively identi-
fied as 7B-hydroxyorobanchol. Co-injection of authentic
7a-hydroxyorobanchol and 7-oxoorobanchol standards further
confirmed their presence in the tomato root exudates (data not
shown).
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compounds are isomers. Unfortunately, the isola-
tion and purification of these isomeric compounds
was not possible due to partially overlapping RTs.
To test the biological activity of the tomato
strigolactones in Phelipanche ramosa seed germi-
nation, tomato root exudates were fractioned by
HPLC as previously described 9 and the fractions
in which the strigolactones eluted determined by
MRM-LC-MS/MS (Fig. 4). P. ramosa germina-
tion corresponded, to some extent, to the elution
of known tomato strigolactones. It is plausible
that the germination inducing activity detected
in the earlier eluting fractions (Fraction 9-14),

can be attributed to the presence of the newly
identified 7-hydroxy- and 7-oxoorobanchol iso-
mers (Fig. 4). However, the germination induc-
ing activity of several other fractions cannot be
directly explained. It is possible that in some of
o these, minor concentrations of several strigolac-
tones co-elute and that their accumulated activity
leads to reasonably high seed germination while
remaining below the detection level of MRM-
LC-MS/MS. But we can also not exclude that
even more unknown strigolactones (or germi-
nation stimulants of other chemical classes) are
secreted by tomato roots. Fraction 22 is of inter-
est as it was also detected in the root exudate of
o Arabidopsis.’

The identification of orobanchyl acetate,
7-oxoorobanchol, two 7-hydroxyorobanchol iso-
mers and two additional didehydroorobanchol

isomers in tomato root exudate expands the

banchol; 2, 7-hydroxyorobanchol; 3, solanacol; 4, 7-oxoorobanchol).

Figure 1. Structures of strigolactones. (A) Structure of 5-deoxystrigol highlighting the
core strigolactone structure (ABCD indicate the four ring stucture, dashed line indicates
the enol ether bridge) (B) Structure of some naturally occurring strigolactones (1, oro-

number of tomato strigolactones to ten. The aro-
matic strigolactone solanacol has been postulated
to be derived from orobanchol through a series

of enzymatic hydroxylation/dehydroxylation

Four putative didehydroorobanchol isomers with m/z 345—
eluting at RTs 6.45, 6.85, 7.01 and 7.15 min—were detected
(Fig. 2A). The accurate mass for their protonated molecular
ions [M + H]+ was m/z 345.1333 + 0.0005 (determined using
LC-LTQ/Orbitrap-MS). This is in accordance with the theo-
retically calculated mass for C ;H, O,, m/z 345.1338. The colli-
sion induced fragmentation spectra of the protonated molecular
ions of all four isomers were obtained with triple quad MS (Fig.
3D). Upon fragmentation the [M + H]+ ion is converted to an
ion with m/z 327 [M + H - H,OJ+ through a loss of water. A
further loss of the D-ring gives the ion at m/z 231 [M + H -
H,O - D-ring]+. Several consecutive losses of water, CO and/
or acetylene lead to ions at m/z 203, 187, 175 and 161 (Fig. 3D,
1-4). The abundance of most of these fragments is rather simi-
lar for all isomers. The main difference between the isomers is
the fragment with m/z 187, which is relatively low in MS/MS
fragmentation spectra of two of the isomers (RTs 6.45 and 7.01
min). Based on these observations it seems likely that all four
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reactions with migration of a methyl group and
double bonds.>'¢ Several of the tomato strigolac-
tones identified here were postulated to be intermediates in this
conversion'® and their identification in tomato seems to sup-
port this hypothesis. In addition, the stereochemistry of the

revised solanacol structure®*??

matches the stereochemistry of
orobanchol which was recently unambiguously determined.*
The configuration of these two compounds does, however, not
match the proposed stereochemistry of 7-oxoorobanchol?! and
1'13,16

7-hydroxyorobancho However, in these reports the ste-
reochemistry of the latter compound was not unambiguously
determined. Technical advancements, in combination with an
increasing interest in the stereochemistry of strigolactones have
resulted in debate on the structural reliability of authentic stan-
dards (personal communication Prof. Dr. Binne Zwanenburg)
and led to several revisions to proposed structures of naturally

2324 and additional revisions in

occurring strigolactones already
the near future are likely. Further research and structure identi-
fication will be needed to prove this and confirm the postulated

pathway. A better understanding of this will in the near future
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Figure 2. MRM-LC-MS/MS analysis of tomato (cv Moneymaker) root exudates. (A) Total ion current (TIC) chromatogram of tomato root exudates. (B)
Transitions 389.15 > 233.15 and 389.15 > 97 for orobanchyl acetate. (C) Transitions 363.2 > 249.1 and 363.2 > 96.96 for 7-hydroxyorobanchol isomers.

prove instrumental for designing strategies to fine-tune the
strigolactone composition in a plant. This would enable plant
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breeders to optimize strigolactones for biological activity and to
select varieties that, for example, do produce root exudates that
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Figure 3. MS/MS fragmentation spectra of the newly identified tomato strigolactones recorded during online separation of tomato root exudates. (A)
MS/MS fragmentation spectra of orobanchyl acetate in tomato root exudates (1) and authentic orobanchyl acetate (2) at a collision energy of 18 eV. (B)
MS/MS fragmentation spectrum of 7-oxoorobanchol in tomato root exudates (1) and authentic 7-oxoorobanchol (2) at a collision energy of 15 eV. (C)
MS/MS fragmentation spectra of an authentic 7a-hydroxyorobanchol (1), the putative 7a-hydroxyoorbanchol isomer ((M+H]+, m/z 363) in tomato root
exudates (2), the tentative 7B3-hydroxyoorbanchol isomer ([M+H]+, m/z 363) in tomato root exudates (3), at a collision energy of 15 eV.
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Figure 3. MS/MS fragmentation spectra of the newly identified tomato strigolactones recorded during online separation of tomato root exudates. (D)
MS/MS fragmentation spectra of the four putative didehydroorobanchol in tomato root exudates (1-4) at a collision energy of 15 eV.
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and orobanchyl acetate (6).

Figure 4. Germination of Phelipanche ramosa seeds induced by HPLC fractions of tomato (cv Moneymaker) root exudate. Bars represent the average
of three independent biological replicates + SE. Dashed line indicates HPLC gradient (acetonitrile concentration), arrows point to main fractions in
which strigolactone standards elute: 7-hydroxyorobanchol (1), 7-oxoorobanchol (2), solanacol (3), didehydroorobanchol isomers (4), orobanchol (5)
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facilitate AM symbiosis and control shoot branching, but do not
induce parasitic plant seed germination.
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