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Strigolactones are plant hormones involved in the regulation of 
above and below ground plant architecture1-3 and rhizosphere 
signaling4,5 and have been identified in many plant species.6-10 
Strigolactones are derived from carotenoids11 and therefore 
belong to the chemical class of the apocarotenoids. The strigo-
lactone chemical structure consists of four rings (ABCD), with 
a tricyclic lactone (ABC part) and butenolide group (D-ring) 
connected by a characteristic enol ether bridge (Fig. 1A). It has 
been reported that this enol ether bridge is not only essential for 
parasitic seed germination,12,13 but is also required for the induc-
tion of AM branching14 and their hormonal activity in planta.15 
Although the main structure of strigolactones is rather similar, 
their A- and B-ring decoration and stereochemistry can vary 
substantially (Fig. 1B).5,16 It is clear that different functional 
groups and stereochemistry lead to different biological specific-
ity in strigolactones.5,14,16,17 We recently reported on the role of 
orobanchol, solanacol, and two putative didehydroorobanchol 
isomers in tomato.18 In this addendum we report the presence 
of several additional strigolactones in tomato and discuss their 
possible biological relevance.

Tomato plants were grown under controlled conditions, 
their exudates collected, purified and analyzed as previ-
ously described.9,18,19 All strigolactones previously reported 
in tomato7,20 were present in the samples analyzed (Fig. 2A). 
In addition, orobanchyl acetate was also detected in tomato 
root exudates and its identity confirmed by comparison with 
an authentic standard (Figs. 2B and 3A). Orobanchyl acetate 
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was recently detected in the xylem sap of tomato,18 but its pres-
ence in root exudates has not been reported before. In addition, 
7-oxoorobanchol and two 7-hydroxyorobanchol isomers were 
detected in purified tomato exudates (Fig. 2A and C). The rela-
tively low levels (based on MS signal intensities) of these strigo-
lactones is likely the reason why they have not been detected 
before in crude tomato root exudates.

The compound eluting at RT 3.75 min was identified as 
7-oxoorobanchol, based on comparison of its RT and MS/
MS fragmentation spectra with that of an authentic 7-oxooro-
banchol standard21 (Figs. 2C and 3B). The RT of 2.57 min 
(Fig. 2C) of one of the putative 7-hydroxyorobanchol isomers, 
as well as its MS/MS fragmentation spectrum obtained at col-
lision energies of5,10,15,20 and 25 eV were identical to those of 
an authentic 7α-hydroxyorobanchol standard (kindly provided 
by K. Yoneyama) (Fig. 3C, data not shown) and similar to an 
authentic 7α-hydroxyorobanchyl acetate standard (Fig. 3C), 
identifying this compound as 7α-hydroxyorobanchol. The 
MS/MS fragmentation spectrum of the less polar 7-hydroxy-
orobanchol isomer (RT 3.09 min, Fig. 2C) was very simi-
lar to that of the authentic 7α-hydroxyorobanchol (Fig. 3C) 
and 7β-hydroxyorobanchyl acetates standards 16 (data not 
shown). Therefore, this compound is tentatively identi-
fied as 7β-hydroxyorobanchol. Co-injection of authentic 
7α-hydroxyorobanchol and 7-oxoorobanchol standards further 
confirmed their presence in the tomato root exudates (data not 
shown).
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compounds are isomers. Unfortunately, the isola-
tion and purification of these isomeric compounds 
was not possible due to partially overlapping RTs.

To test the biological activity of the tomato 
strigolactones in Phelipanche ramosa seed germi-
nation, tomato root exudates were fractioned by 
HPLC as previously described 9 and the fractions 
in which the strigolactones eluted determined by 
MRM-LC-MS/MS (Fig. 4). P. ramosa germina-
tion corresponded, to some extent, to the elution 
of known tomato strigolactones. It is plausible 
that the germination inducing activity detected 
in the earlier eluting fractions (Fraction 9–14), 
can be attributed to the presence of the newly 
identified 7-hydroxy- and 7-oxoorobanchol iso-
mers (Fig.  4). However, the germination induc-
ing activity of several other fractions cannot be 
directly explained. It is possible that in some of 
these, minor concentrations of several strigolac-
tones co-elute and that their accumulated activity 
leads to reasonably high seed germination while 
remaining below the detection level of MRM-
LC-MS/MS. But we can also not exclude that 
even more unknown strigolactones (or germi-
nation stimulants of other chemical classes) are 
secreted by tomato roots. Fraction 22 is of inter-
est as it was also detected in the root exudate of 
Arabidopsis.9

The identification of orobanchyl acetate, 
7-oxoorobanchol, two 7-hydroxyorobanchol iso-
mers and two additional didehydroorobanchol 
isomers in tomato root exudate expands the 
number of tomato strigolactones to ten. The aro-
matic strigolactone solanacol has been postulated 
to be derived from orobanchol through a series 
of enzymatic hydroxylation/dehydroxylation 
reactions with migration of a methyl group and 
double bonds.5,16 Several of the tomato strigolac-

tones identified here were postulated to be intermediates in this 
conversion16 and their identification in tomato seems to sup-
port this hypothesis. In addition, the stereochemistry of the 
revised solanacol structure22,23 matches the stereochemistry of 
orobanchol which was recently unambiguously determined.24 
The configuration of these two compounds does, however, not 
match the proposed stereochemistry of 7-oxoorobanchol21 and 
7-hydroxyorobanchol.13,16 However, in these reports the ste-
reochemistry of the latter compound was not unambiguously 
determined. Technical advancements, in combination with an 
increasing interest in the stereochemistry of strigolactones have 
resulted in debate on the structural reliability of authentic stan-
dards (personal communication Prof. Dr. Binne Zwanenburg) 
and led to several revisions to proposed structures of naturally 
occurring strigolactones already23,24 and additional revisions in 
the near future are likely. Further research and structure identi-
fication will be needed to prove this and confirm the postulated 
pathway. A better understanding of this will in the near future 

Four putative didehydroorobanchol isomers with m/z 345—
eluting at RTs 6.45, 6.85, 7.01 and 7.15 min—were detected 
(Fig.  2A). The accurate mass for their protonated molecular 
ions [M + H]+ was m/z 345.1333 ± 0.0005 (determined using 
LC-LTQ/Orbitrap-MS). This is in accordance with the theo-
retically calculated mass for C

19
H

21
O

6
, m/z 345.1338. The colli-

sion induced fragmentation spectra of the protonated molecular 
ions of all four isomers were obtained with triple quad MS (Fig. 
3D). Upon fragmentation the [M + H]+ ion is converted to an 
ion with m/z 327 [M + H - H

2
O]+ through a loss of water. A 

further loss of the D-ring gives the ion at m/z 231 [M + H - 
H

2
O - D-ring]+. Several consecutive losses of water, CO and/

or acetylene lead to ions at m/z 203, 187, 175 and 161 (Fig. 3D, 
1–4). The abundance of most of these fragments is rather simi-
lar for all isomers. The main difference between the isomers is 
the fragment with m/z 187, which is relatively low in MS/MS 
fragmentation spectra of two of the isomers (RTs 6.45 and 7.01 
min). Based on these observations it seems likely that all four 

Figure 1. Structures of strigolactones. (A) Structure of 5-deoxystrigol highlighting the 
core strigolactone structure (ABCD indicate the four ring stucture, dashed line indicates 
the enol ether bridge) (B) Structure of some naturally occurring strigolactones (1, oro-
banchol; 2, 7-hydroxyorobanchol; 3, solanacol; 4, 7-oxoorobanchol).
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breeders to optimize strigolactones for biological activity and to 
select varieties that, for example, do produce root exudates that 

prove instrumental for designing strategies to fine-tune the 
strigolactone composition in a plant. This would enable plant 

Figure 2. MRM-LC-MS/MS analysis of tomato (cv Moneymaker) root exudates. (A) Total ion current (TIC) chromatogram of tomato root exudates. (B) 
Transitions 389.15 > 233.15 and 389.15 > 97 for orobanchyl acetate. (C) Transitions 363.2 > 249.1 and 363.2 > 96.96 for 7-hydroxyorobanchol isomers.
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Figure 3. MS/MS fragmentation spectra of the newly identified tomato strigolactones recorded during online separation of tomato root exudates. (A) 
MS/MS fragmentation spectra of orobanchyl acetate in tomato root exudates (1) and authentic orobanchyl acetate (2) at a collision energy of 18 eV. (B) 
MS/MS fragmentation spectrum of 7-oxoorobanchol in tomato root exudates (1) and authentic 7-oxoorobanchol (2) at a collision energy of 15 eV. (C) 
MS/MS fragmentation spectra of an authentic 7α-hydroxyorobanchol (1), the putative 7α-hydroxyoorbanchol isomer ([M+H]+, m/z 363) in tomato root 
exudates (2), the tentative 7β-hydroxyoorbanchol isomer ([M+H]+, m/z 363) in tomato root exudates (3), at a collision energy of 15 eV.
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Figure 3. MS/MS fragmentation spectra of the newly identified tomato strigolactones recorded during online separation of tomato root exudates. (D) 
MS/MS fragmentation spectra of the four putative didehydroorobanchol in tomato root exudates (1–4) at a collision energy of 15 eV.

Figure 4. Germination of Phelipanche ramosa seeds induced by HPLC fractions of tomato (cv Moneymaker) root exudate. Bars represent the average 
of three independent biological replicates ± SE. Dashed line indicates HPLC gradient (acetonitrile concentration), arrows point to main fractions in 
which strigolactone standards elute: 7-hydroxyorobanchol (1), 7-oxoorobanchol (2), solanacol (3), didehydroorobanchol isomers (4), orobanchol (5) 
and orobanchyl acetate (6).
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