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Abstract

BACKGROUND: Arbuscular mycorrhizal fungi (AMF) are soil-borne microorganisms that establish mutualistic associations with
roots of most terrestrial plants. This symbiosis results in nutritional and defensive benefits to the host plant, usually conferring
protection against biotic stresses, but its indirect impact on third trophic levels is still unknown. In the present work, we explore
whether the symbiosis of tomato plants with Funneliformis mosseae (and/or exposition to herbivory) influences the interaction
of the generalist pest Spodoptera exigua (Lepidoptera: Noctuidae) with bacterial (Bacillus thuringiensis) and viral (baculovirus,
SeMNPV) natural entomopathogens.

RESULTS: Symbiosis with AMF and previous herbivory reduces the relative growth of S. exigua, increases its susceptibility to a
sublethal dose of B. thuringiensis and has positive or neutral impact on the lethality of SeMNPV. Reduction of the phenoloxidase
activity, a marker of the insect immune response, was associated with the larval feeding on plant material previously exposed
to herbivory but not to the AMF. In addition, no changes in the insect gut microbiota could be associated with the observed
changes in larval growth and susceptibility to the entomopathogens.

CONCLUSION: Our findings provide the first evidence of compatibility of AMF symbiosis in tomato with the use of bacterial and
viral entomopathogens, contributing to the development of novel approaches to combine the beneficial effect of AMF and
entomopathogens in biological pest control.
© 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
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1 INTRODUCTION
Plants must constantly cope with adverse environmental factors,
consequently they have evolved several strategies to face
them.1,2 They display multiple defence mechanisms to deal with
diverse stressors.3 The plant microbiota is known to modulate
such defence mechanisms and beneficial soil microorganisms
can increase plant stress resistance/tolerance.4,5 In this context,
the association with arbuscular mycorrhizal fungi (AMF) deserve
special attention. These obligate biotrophs belong to the phylum
Glomeromycota and form symbiotic interactions with more than
80% of land plants, including most agricultural crops.6 In this
interaction, AMF colonize the root cortex and develop an extrara-
dical mycelium, increasing the acquisition of water and inorganic
nutrients (mainly phosphate and ammonia) of the plant. In return,
the fungus receives photosynthates for the maintenance of
mycorrhizal structures.7 Besides improving plant nutritional status

and growth, this symbiosis also improves the ability of the plant to
overcome abiotic stresses such as salinity, drought or the pres-
ence of heavy metals.8,9

Mycorrhization is also involved in enhancing plant defense
against a broad spectrum of pathogens and pests, a phenomenon
known as mycorrhiza-induced resistance (MIR).10–12 The
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symbiosis with AMF stimulates the immune system of the plant,
leading to a primed state that implies a more efficient activation
of defensive responses after exposure to biotic attack.13,14 In the
absence of stress, the defenses of mycorrhizal plants are slightly
activated, hence allowing the plants to redirect resources to other
biological functions (low-cost defensive strategy).10,15 In the pres-
ence of stress, mycorrhizal plants can trigger a faster defense
response, both below and above ground.12,16 The protective role
of mycorrhization has been proven at root level against soil-borne
pathogens, nematodes or root-chewing insects17–19 whereas in
aboveground tissues MIR enhances resistance against necro-
trophic pathogens and generalist chewing insects.12 The mecha-
nisms that drive MIR in aboveground tissues are still elusive, but
there is emerging evidence showing transcriptional and meta-
bolic reconfiguration in the leaves of mycorrhizal plants which
led to MIR-primed responses.20–24 Besides defense priming, some
basal changes occur in leaves of mycorrhizal plants. For example,
mycorrhizal plants often contain higher amounts of bioactive
phenolic metabolites in their leaves than nonmycorrhizal plants.
However, these metabolic responses are highly specific to each
AMF–plant species combination.22

For orchestrating a full defense response against herbivores,
plants rely on the jasmonic acid (JA) signalling pathway, which
is a conserved core pathway that is activated after insect feeding
and leads to the accumulation of defensive compounds such as
secondary metabolites (e.g. terpenoids, phenolics and alkaloids
compounds) and proteins (e.g. protease inhibitors, polyphenolox-
idases).1,25 These defensive molecules deter insect herbivory by
directly impairing insect growth.26 In addition, they interplay with
the herbivore microbiome,27 indirectly altering insect fitness, and
may make target insects more susceptible to biotic stresses such
as the entomopathogens.28 These are a group of diverse microor-
ganisms that are pathogenic to insects. They include bacteria,
viruses, fungi and nematodes that are widely used in pest control
in organic farming or integrated pest management strategies.29–
31 Among them, Bacillus thuringiensis and baculoviruses are two
of the most successful organisms used in the control of lepidop-
teran larvae.32,33 Both infect target insects by ingestion and lead
to insect death within a few days.34,35 Besides their direct mode
of action,36–38 research in recent decades has revealed the exis-
tence of complex interactions among these two entomopatho-
gens, plant defenses39,40 and the gut microbiome41–44 that can
lead to a faster death of target insects, perhaps targeting the
immune system or facilitating the weakening of insect protective
barriers such as the peritrophic membrane, which can in turn facil-
itate the start of secondary infections.45

How the metabolic reconfiguration undergone by herbivory
and/or plant mycorrhization impacts susceptibility to entomo-
pathogens of phytophagous larvae has not yet been thoroughly
investigated. In the present work, we compared the effects of
mycorrhizal and non-mycorrhizal Solanum lycopersicum tomato
plants in the absence or the presence of herbivory on the growth
of larvae from the armyworm, Spodoptera exigua (Lepidoptera:
Noctuidae) and their susceptibility to B. thuringiensis subsp. aiza-
wai (Xentari) and the Spodoptera exigua multiple nucleopolyhe-
drovirus (SeMNPV). We also analysed the changes in the
prophenoloxidase, a marker of the insect immune status, and
midgut microbiota. Lyophilized instead of fresh leaves were used
to discriminate the effect of the herbivory-induced phytochemi-
cals from the changes associated with plant mycorrhizal status
exclusively. We used these data to address four major questions:
Are plant defenses enhancing susceptibility to selected

entomopathogens? Is this higher susceptibility increased when
mycorrhization is present? Are plant defenses altering the insect
immune system and/or gutmicrobiota? Are these changes further
modulated by the presence of AMF? Our results reveal that
mycorrhization of tomato plants in combination with previous
herbivory increases the susceptibility of S. exigua to the bacterial
entomopathogen and does not interfere with the lethality of the
viral entomopathogen, suggesting that the use of both methods
in the field (AMF and use of B. thuringiensis or baculovirus) may
be combined with promising results.

2 MATERIALS AND METHODS
2.1 Insects
Spodoptera exigua eggs were provided by Andermatt Biocontrol
AG (Grossdietwil, Switzerland) and maintained in our laboratory
(Valencia, Spain) by continuously rearing on artificial diet supple-
mented with 0.05% of tetracycline46 at 25 ± 3 °C with 70 ± 5%
relative humidity and a photoperiod of 16 h light:8 h dark.

2.2 Tomato plants, mycorrhization and diet preparation
Solanum lycopersicum cv. Moneymaker (MM) plants were grown
at the Zaidín Experimental Station (CSIC, Granada). Tomato seeds
were surface sterilized and germinated in sterile vermiculite.
Seedlings at two cotyledons stage were inoculated with the
AMF Funneliformis mosseae (BEG 12) (Nicolson and Gerdemann)
Gerdemann et Trappe (Banque Européenne des Glomales [BEG]
code 12) at transplanting by mixing the AMF inocula with the
growing substrate, as previously described in Rivero et al.12 Plants
were randomly distributed and grown in a controlled greenhouse
at 24/16 °C with a 16 h:8 h diurnal photoperiod. After 6 weeks of
growth to allow the establishment of the mycorrhizal symbiosis,
herbivory was initiated by infesting plants with two second-instar
S. exigua larvae per plant, which were placed on a leaflet from the
third true using 30 mm Ø clip-cages to limit the feeding area and
avoid their escape. Clip-cages were moved into new leaflets every
2 days to make sure they always had food available. All the plants
showed significant damage to leaves. Accordingly, four groups of
plants were generated depending on the presence or absence of
mycorrhization and/or herbivory: control Nm− (absence of both
factors) and treatments Nm+ (exposition to herbivory), Fm−
(presence of mycorrhization) and Fm+ (presence of both factors)
(Fig. 1). Each treatment consisted of 12 plants growing in a ran-
domized position in the greenhouse. Plants were harvested
8 weeks after mycorrhiza inoculation (15 days after starting of
herbivory). On harvesting, tomato leaves were immediately fro-
zen with nitrogen liquid and stored at −80 °C. An aliquot of each
root systemwas reserved for mycorrhizal assessment. Mycorrhizal
colonization was evaluated by ink-staining fungal structures
within the roots according to Vierheilig et al.,47 and the percent-
age of root length colonized was quantified under a light micro-
scope (Eclipse 50i microscope; Nikon, Japan) using the gridline
intersection method.48 Mycorrhizal colonization was confirmed
in all inoculated plants (Fm), with an average of 12% of the root
length colonized by the fungus. Absence of mycorrhizal coloniza-
tion was confirmed in Nm plants. No significant differences in
shoot or root fresh weight were found between mycorrhizal and
non-mycorrhizal plants (t-test, n = 10, P > 0.05).
The frozen leaf material was fully ground in liquid nitrogen until

leaf powder was obtained, which was lyophilized and stored until
diet preparation. Plant-derived diets were prepared by mixing the
lyophilized material in 1.8% agar containing 5% of the
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compounds used for the standard artificial diet49 to obtain a suit-
able diet for S. exigua larvae.

2.3 Growth bioassay and larval development
With the aim of studying the effects of mycorrhization and previ-
ous herbivory on larval growth, newly molted fourth-instar S. exi-
gua larvae were reared on the different leaf-based diets for 48 h.
For that, disposable polypropylene boxes
(11 cm × 8 cm × 5 cm) with the top cover replaced by paper (air-
flowwindow) were used. Each box contained four S. exigua larvae,
previously weighed (in grams) in a precision balance (Sartorius
MC-1 Analytic AC 120S; Göttingen, Germany) with an accuracy
of 0.1 mg. The boxes were maintained in an insect chamber at
25 ± 1° C with a photoperiod of 16 h light:8 h dark. To prevent
the impact on the weight gain of larval moulting, larvae were
pooled per treatment, and replicated and weighed at 48 h.
Weight increase was recorded and relative growth (RG) was esti-
mated as grams of biomass acquired per gram of initial body
weight.50 Three independent biological replicates were per-
formed. Statistical differences in relative growth between treat-
ments were identified using two-way ANOVA with
mycorrhization and herbivory as factors, followed by a Tukey
HDSmultiple comparison test using R Statistical Software (version
4.1.2; R Foundation for Statistical Computing, Vienna, Austria).
Levene and Shapiro–Wilk tests were applied to determine homo-
scedasticity and normality of data, respectively.

2.4 Interaction with natural entomopathogens
The effect of mycorrhization and herbivory on the susceptibility of
S. exigua larvae to B. thuringiensis and baculovirus (SeMNPV) was
tested using the droplet feeding method. Specifically, newly
molted second-instar larvae were placed in groups during the
infection process using independent Petri dishes for each treat-
ment, where previously 4-μL droplets were arranged in circle.
Each droplet contained 10% sucrose, phosphate-buffered saline
(PBS; pH 7.4), 0.05% tracking dye phenol red and a sublethal con-
centration of one of the two pathogens. For Bt infections, we used
Bacillus thuringiensis subsp. aizawai (Xentari; Kenogard S.A, Barce-
lona, Spain), previously dissolved in water, at two concentrations
(1 and 3 mg/mL). For BV infections, we used a viral suspension
containing 2 × 104 occlusion bodies (OBs) per milliliter from
SeMNPV (SP2 strain).51 We conducted previous assays to estimate
the sublethal and lethal concentrations of the pathogens under

our experimental conditions. After 20 min, larvae with red-
coloured bodies were selected for the next step, thus ensuring
only larvae that had ingested the entomopathogen were
selected. Selected larvae were placed individually in a single well
(2 cm × 2 cm × 2 cm) of a bioassay tray and fedwith a piece of the
different plant-based diets for 48 h at 25 ± 1 °C. Each well was
sealed with microperforated adhesive tape (product no. 9074-L;
Frontier Agricultural Sciences).
The plant-based diet was then replaced by artificial diet (pre-

pared without antibiotic addition) and mortality was recorded
every 24 h for 7 and 8 days (Bt and SeMNPV, respectively) from
the beginning of the bioassay. In Bt assays, four independent rep-
licates were performed with the sublethal dose (1 mg/mL),
whereas two were carried out with the lethal dose (3 mg/mL). In
SeMNPV assays, three independent replicates were conducted.
A total of 16 larvae were used per treatment and replicate. Sur-
vival curves were assessed using the Kaplan–Meier method and
compared using the log-rank analysis (Mentel–Cox test) (Graph-
Pad software Inc., San Diego, CA, USA).

2.5 Phenoloxidase enzymatic assays
To evaluate the effect of mycorrhization and herbivory on the S.
exigua immune system, the hemolymph from the larvae used in
the growth assay was extracted immediately after weighing to
measure the phenoloxidase (PO) enzymatic activity, a marker of
the insect immunity. In brief, the posterior proleg of each larva
was cut, and the hemolymph was collected with a micropipette
and pooled by treatment (four larvae each). Then, hemolymph
was centrifuged at 500 × g for 2 min at 4 °C to remove the hemo-
cytes and kept on ice. Four microliters of cell-free hemolymph,
46 μL of PBS and 50 μL of the substrate L-dopamine (100 μg/mL
in PBS) were added to each well in a 96-well microtiter plate
placed on ice. PO activity was determined by monitoring the
increase of absorbance at 492 nm for 30 min using an Infinite
200 PRO multimode plate reader (TECAN Group Ltd, Switzerland).
The activity of the enzyme was obtained as the initial velocity (Vo)
of the reaction, measuring the change in absorbance per time.
Changes in PO activity in the larval hemolymph could be due to

the effect of the different treatments on insect immune status, but
also direct interaction of plant metabolites on the PO enzymes. To
test that, PO inhibition assay to assess the direct effect of the plant
extract on these enzymes was also performed. For this purpose,
leaf powder from the different treatments was mixed vigorously

Figure 1. General diagram of the treatments applied to S. lycopersicum plants. Four groups of tomato plants were classified according to the presence of
mycorrhization and/or herbivory. Nm−, non-mycorrhizal plants without previous herbivory, used as control; Nm+, non-mycorrhizal plants exposed to her-
bivory by S. exigua larvae for 15 days; Fm−, mycorrhizal plants associated with the arbuscular mycorrhizal fungus F. mosseae; Fm+, mycorrhizal plants
exposed to S. exigua herbivory.
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with methanol (50 mg/mL), incubated for 10 min and centrifuged
at maximum speed for 10 min at 4 °C. The supernatant was col-
lected and used as plant metabolites source. A solution contain-
ing 2 μL of plant extract, 100 μL of L-dopamine (100 μg/mL in
PBS) and 100 μL of larval hemolymph derived from L5 larvae feed-
ing on an artificial diet (20 mg of lyophilized hemolymph in 1 mL
of PBS) was added to each well in a 96-well microtiter plate. After
incubating for 15 min at room temperature, PO activity was mon-
itored and calculated as described above.
Statistical differences in PO activity were identified using two-

way ANOVA with mycorrhization and herbivory as factors, fol-
lowed by a Tukey HDSmultiple comparison test using R Statistical
Software (version 4.1.2; R Foundation for Statistical Computing,
Vienna, Austria). The normality of the data sets was assessed by
a Shapiro–Wilk test and homoscedasticity by Levene's test.

2.6 Gut microbiota composition and diversity
To test if feeding on the different plant-based diets could influ-
ence the gut microbiota of S. exigua, we carried out metagenomic
sequencing of the guts extracted from the larvae used in the
growth bioassay and PO quantification. An additional treatment
(AD) represented by larvae of the same instar raised side-by-side
during 48 h in 100% artificial diet without antibiotic was added.
Each sequenced sample (AD, Nm−, Nm+, Fm−, Fm+) was com-
posed of a pool of four larvae and three independent biological
replicates per treatment were analysed. In brief, after 48 h of feed-
ing, the whole gut of each larva was dissected with forceps,
homogenized in Luria–Bertani medium supplemented with 10%
glycerol and kept at −80 °C until DNA extraction. Total DNA
extraction from the homogenized guts was carried out using a
MasterPure DNA purification kit (Epicentre, Madison, WI, USA)
according to the manufacturer's instructions, followed by PCR
amplification and sequencing of the 16S rRNA (V3-V4 region).
Sequencing was performed as previously described in Martínez-
Solís et al.44 using a 2 × 300-pb paired-end run on a MiSeq
sequencing platform (Illumina) at the Foundation for the Promo-
tion of Health and Biomedical Research (FISABIO, Valencia). The
PRINSEQ-lite program52 was used to evaluate the quality of the
obtained reads, setting the following parameters: min_length,
50; trim_qual_right, 20; trim_qual_type, mean; trim_qual_win-
dow, 20. Paired reads were joined using fastq-join from the ea-
tools suite.53 Then, filtered and demultiplexed sequences were
processed with software QIIME v.1.9.54 using default parameters.
The sequences, from a total of 15 samples, were clustered in oper-
ational taxonomic units (OTUs) of 97% sequence identity using de
novo OTU picking. After filtering the unassigned Chloroflexi and
Cyanobacteria taxa, bacterial composition was determined for
the 20 most abundant genera and represented in Excel software.
In addition, the OTU table data was transformed and normalized
(CSS (cumulative sum scaling) + log with total sum normalization)
using Calypso software (version 8.2) to generate a canonical corre-
spondence analysis (CCA) plot showing the relationship among
mycorrhization/herbivory (exposure factors) and larval gut micro-
bial communities at genus level. Determination of alpha diversity
(Shannon index) and linear discriminant analysis (LDA) effect size
(LEfSE) was undertaken at genus level using mycorrhization and
herbivory as factors.
To calculate the bacterial load in each sample, total DNA was

amplified using universal primers for the 16S rRNA gene by per-
forming a specific quantitative PCR (qPCR) in a StepOnePlus
Real-Time PCR System (Applied Biosystems, Foster City, CA,
USA). Each reaction was carried out using 5× HOT FIREpol

EvaGreen qPCR Mix Plus (ROX) (Solis BioDyne, Tartu, Estonia) in
a total reaction volume of 20 μL. To estimate the bacterial concen-
tration, the threshold cycle (Ct) values of our samples were com-
pared with those from a standard curve of known Escherichia
coli DNA concentrations. Statistical analysis was performed using
one-way ANOVA with a Tukey's multiple comparison test (Graph-
Pad software Inc., San Diego, CA, USA).

3 RESULTS
3.1 Effect of mycorrhization and herbivory on larval
development
To understand how mycorrhization (Fm−), herbivory (Nm+) or a
combination of both (Fm+) impact on the development of
fourth-instar S. exigua larvae, we measured the relative growth
of caterpillars after feeding on the different plant diets for 48 h
(Fig. 2(A)). A significant decrease of about 2-fold in relative growth
was observed after herbivory (Nm+ and Fm+) but not after mycor-
rhization and both factors interacted in a significant way (mycor-
rhiza: F1,8 = 3.727, P = 0.090; herbivory: F1,8 = 21.939, P = 0.002;
interaction: F1,8 = 5.435, P = 0.048). No larval mortality was
observed in either treatment.

3.2 Influence of mycorrhization and herbivory on larval
susceptibility to entomopathogens
The effect of mycorrhization and herbivory on the susceptibility of
S. exigua to two natural bacterial (B. thuringiensis) and viral
(SeMNPV) pathogens was evaluated. Susceptibility of larvae to B.
thuringiensis was analyzed at sublethal and lethal concentrations.
At the sublethal concentration (1 mg/mL), no mortality was
observed for the insects feeding on diet based on control plants
(Nm−) whereas about 20% decrease in survival was observed
when infected larvae were reared on Nm+, Fm− or Fm+ diets
(χ2 = 12.31, df = 3, P = 0.0064; Fig. 2(B)). There were no significant
differences among these three treatments. In contrast, when lar-
vae were exposed to a higher concentration of B. thuringiensis
(3 mg/mL), no differences in survival were observed between
the larvae feeding on the different treated plant-based diets and
the control Nm− (χ2 = 2.114, df = 3, P = 0.5492; Fig. 2(C)).
Susceptibility to baculovirus was evaluated using a sublethal

concentration of SeMNPV suspension (2 × 104 OBs/ml). Only
feeding on mycorrhizal plant (Fm−)-based diet caused a signifi-
cant increase in mortality when compared to the control (Nm−)
(χ2 = 3.944, df = 1, P = 0.0470; Fig. 2(D)).

3.3 Impact of treatments on larval immunity
Changes in the insect metabolism may weaken its immune status
and in turn make insects more susceptible to pathogens. Hence,
we asked whether feeding on plants that had been mycorrhized
or previously exposed to herbivory may alter insect immune
defences. To test this, we focused on the analysis of one of the
key components of the insect immune system, PO, whose activity
in the hemolymph is a widely used marker of the immune status.
Two-way ANOVA showed that only previous herbivory had a sig-
nificant effect on the activity of PO (mycorrhiza: F1,8 = 1.361,
P = 0.277; herbivory: F1,8 = 6.665, P = 0.033; interaction:
F1,8 = 0.010, P = 0.924). (Fig. 3(A)). To verify that reduction in PO
activity was not driven by the presence of PO inhibitors in the
lyophilized leaves, we performed an inhibition assay that con-
firmed that none of the different treatments inhibited PO activity
in insect hemolymph (mycorrhiza: F1,8 = 2.061, P = 0.189;
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herbivory: F1,8 = 0.010, P = 0.924; interaction: F1,8 = 0.157,
P = 0.702) (Fig. 3(B)).

3.4 Gut microbiota changes after feeding on the
different diets
Gut microorganisms are critical to the nutrition, physiology and
immune responses of many insect species, and have a complex
interplay with both plant metabolites and entomopathogens.
Thus, we studied the influence of the different plant-based diets
to understand the impact of mycorrhization and herbivory on
the gut bacterial communities of S. exigua.
Bacterial microbiota composition was determined in larval guts

after 48 h of feeding on artificial or plant-based diets (Fig. 4(A)).
Most abundant bacteria belonged to the Delftia genus, which
was highly present in all the groups (with a relative abundance
ranging from 10% to 50%), followed by unclassified Oxalobacter-
aceae, Comamonadaceae and Enterobacteriaceae. CCA showed
significant differences (P = 0.038; Fig. 4(B), upper panel) in larval
gutmicrobiota composition at the genus level among the artificial
and the plant-based diets. However, these differences disap-
peared when only plant diets were compared (P = 0.053; Fig. 4
(B), bottom panel). Great variability and heterogeneity were
observed among different diet groups but also among samples
from the same group. No differences in the bacterial load
(P = 0.407; Fig. 4(C)) nor in the diversity (P = 0.37; Fig. 4(D)) were
observed among the different diets. LEfSE analysis revealed the
existence of three genera with differential abundance according
to the type of ingested diet. High abundance of unclassified

Caldilineaceae and Anaerobaculaceae were detected in larvae
fed on the artificial diet when compared with the plant-based
diet. Unclassified Xanthomonadaceae were found to be more
abundant in the insects fed on the Fm+ plant diet when com-
pared to the other diets.

4 DISCUSSION
Our results show that mycorrhizal colonization of tomato roots by
F. mosseae coupled with previous herbivory decreases S. exigua
growth, enhances its susceptibility to B. thuringiensis and has pos-
itive or neutral impact on the lethality of SeMNPV. These bacterial
and viral entomopathogens are widely used for the control of foli-
vorous S. exigua larvae,33,55,56 and our results support the compat-
ibility of AMF application in tomato with the use of
entomopathogens in pest management strategies.
AMF colonization is known to imply changes in plant physiology

and metabolism that may enhance its resistance to foliar-feeding
herbivores.15,57–60 Our larval growth assays have revealed that F.
mossae inoculation in combination with herbivory had a negative
impact on the growth of S. exigua. This confirms previous observa-
tions with the same mycorrhiza–plant–insect combination,12,59

with a related foliar-feeder, the cotton bollworm, Helicoverpa
armigera (Lepidoptera: Noctuidae),61 with S. exigua feeding on
Plantago lanceolata inoculated with F. mossae,62 and also with
other Spodoptera spp.–plant–AMF combinations.63–66 Our
approach differs from these previous studies because we used a
plant-based artificial diet composed of lyophilized leaves from

Figure 2. Effect of mycorrhization and herbivory on the development and susceptibility of S. exigua larvae to bacterial and viral pathogens. (A) Larval
development, represented as relative growth, after feeding on plant-based diets for 48 h. Mean values were analyzed with two-way ANOVA with mycor-
rhization and herbivory as factors followed by a Tukey HSD post hoc test. Error bars represent standard error of the mean (SEM). (B) Percentage of survival
of larvae infected with Xentari (Bacillus thuringiensis subsp. aizawai) at 1 mg/mL (sublethal) and (C) 3 mg/mL (lethal). (D) Percentage of survival of larvae
infected with SeMNPV virus at a sublethal concentration (2 × 104 OBs/ml). Mortality curves were plotted using the Kaplan–Meier method and statistical
analyses were performed using the log-rank (Mantel–Cox) test. Error bars depict standard errors (SE). Different letters denote significant differences
among the treatments. Nm−, non-mycorrhizal plants without previous herbivory; Nm+, non-mycorrhizal plants exposed to herbivory; Fm−, mycorrhizal
plants; Fm+, mycorrhizal plants exposed to herbivory.
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the inoculated and/or herbivory-exposed plants. This allows the
dissociation between the effects of mycorrhization and herbivory,
and for their dietary outcomes on larval growth and susceptibility
to entomopathogens to be tested separately. We observed that
previous herbivory but not AMF colonization reduced larval
growth, and that both factors interacted in a significant way.
The weight decrease of S. exigua larvae feeding on a diet based
on herbivory-exposed plants, either with or without AMF inocula-
tion, may be related to the JA-dependent defensive response of
the tomato plants, which accumulate secondary metabolites toxic
to deter the herbivore.1,67 In fact, on S. exigua herbivory, tomato
plants undergo a dramatic metabolic reconfiguration, which has
been shown by previous studies to be primed by F. mossaemycor-
rhization.12 In contrast, in the absence of herbivory, AMF coloniza-
tion has very low impact on the foliar metabolic profile,9 although
some transcriptional shifts in transcription in the levels of genes
related to JA biosynthesis and response, even in the absence of
any aggressor, have been reported.68,69 Thus, the significant inter-
action between herbivory and AMF colonization on S. exigua lar-
val growth may be explained by the effect of AMF priming on
the subsequent response to herbivory. However, we should be
aware that in lack of metabolic data supporting the induction of
plant defences and their modulation by AMF priming, we cannot
exclude other hypothesis explaining the reduced larval growth.
For example, a drop in the nutritional quality of the attacked
leaves might reduce the conversion efficiency of the ingested
food by the larvae.62 Previous studies have shown that in tomato,
F. mossae inoculation increased leaf photosynthesis, nutrient
absorption and altered foliar hormone homeostasis.59 Thus,

Figure 3. Effect of mycorrhization and herbivory on S. exigua propheno-
loxidase (PO) activity. (A) Enzymatic activity of PO, represented as the ini-
tial velocity (Vo) of the reaction. (B) PO enzymatic inhibition assay using
leaf extracts from the different treatments. Means were analyzed with
two-way ANOVA using mycorrhization and herbivory as factors. Error bars
represent standard error of the mean (SEM).

Figure 4. Effect of mycorrhization and herbivory on the gut microbiota of S. exigua larvae. (A) Relative abundance (percentage) of the different genera of
bacteria of guts from larvae fed on the different diets for 48 h. Each bar represents a pool of four larvae. (B) Canonical correspondence analysis (CCA)
showing the relationship between the composition of S. larvae gut microbiome at genus level and the diets tested: artificial diet (AD) and plant-based
diets. (C) Bacterial load of larval guts calculated as nanogram of bacterial DNA per 50 ng of total DNA (means ± SEM). (D) Microbial diversity of larval guts
represented using Shannon index. Nm−, non-mycorrhizal plants without previous herbivory; Nm+, non-mycorrhizal plants exposed to herbivory; Fm−,
mycorrhizal plants; Fm+, mycorrhizal plants exposed to herbivory.
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additional experiments are needed to unravel the causes of
decreased S. exigua growth.
All the plant diet based on either mycorrhizal (Fm−) and/or

plants exposed to herbivory (Nm+ and Fm+) displayed an
increased susceptibility to a sublethal concentration of B. thurin-
giensis, with no additional effects when AMF and previous herbiv-
ory were combined. Equally, a general increase in mortality of
SeMNPV-infected S. exigua larvae was observed when they were
fed on the treated plant-based diets, although only the Fm− diet
led to a statistically significant difference. These observations sug-
gest that mycorrhization and previous herbivory, individually or in
combination, could enhance the susceptibility of S. exigua larvae
to entomopathogens. This contrasts with the only previous study
so far that evaluated the combination of AMF and an entomo-
pathogenic baculovirus. García-Gómez et al. reported that inocu-
lation of maize roots with a natural community of AMF
(including Glomus spp., Acaulospora spp., Gigaspora spp. and
Intraspora spp) increased growth of the fall armyworm, Spodop-
tera frugiperda (Lepidoptera: Noctuidae) under certain nitrogen
fertilization conditions, and reduced larval mortality by its baculo-
virus (SfMNPV) by about 25%.70

The increased lethality of B. thuringiensis after previous herbiv-
ory or the combination of herbivory and AMF may be explained
by the defense metabolites produced by the plant after attack,
which have been previously shown to influence the outcome of
insect–baculovirus interactions39,71,72 as well as increase or
decrease the lethality of B. thuringiensis at various extents. For
instance, tannins and nicotine decreased mortality of B. thurin-
giensis against a variety of insects,73–77 whereas protease inhibi-
tors, L-canavanine, resorcinol and gallic acid increased B.
thuringiensis lethality.78–80 The induction of herbivory defenses
in tomato increased susceptibility to B. thuringiensis in the lepi-
dopteran Helicoverpa zea (Lepidoptera: Noctuidae),40 in a similar
fashion to what we observed for S. exigua. In the tomato-Helicov-
erpa system, the increased susceptibility to B. thuringiensis corre-
lated with increased plant polyphenoloxidase (PPO) and
peroxidase (POD) activity, which are part of the inducible defen-
sive armoury of tomato.40 Interestingly, in our systemwe reported
an increased susceptibility to B. thuringiensis also in mycorrhizal
plants which had not been induced by previous herbivory and
thus, no major changes in these defense related enzyme activities
are expected.12,59 Therefore, the enhanced lethality of B. thurin-
giensis but also of SeMNPV in larvae reared on Fm− diets may
be led by other causes. The effects of plant nutrients dictate her-
bivore physiology, which in turn could influence their susceptibil-
ity to the third trophic levels such as the entomopathogens.81,82

Susceptibility to pathogens is strongly correlated with the
immune status of an organism.83,84 Thus, we sought to evaluate
the effects of the plant-based diets on the larval immune system,
specifically focusing on the activity of the insect's PO due to its rel-
evant function in cellular and humoral response in insects.85 PO
enzyme is involved in the formation of melanin, which is depos-
ited around the damaged tissue or foreign object, leading to the
production of intermediate products with toxic effects against
bacterial, fungal and viral agents.86 Enzymatic assays revealed
that PO activity was significantly reduced by herbivory but not
by AMF or the interaction of the two factors. Additionally, inhibi-
tion assays showed that the leaf extracts from the tested plants
did not suppress PO activity, ruling out the possibility of direct
interference with the enzymatic activity. Thus, the results suggest
that compounds induced during herbivory negatively influence
the immune status of S. exigua larvae. The reduction in PO activity

may be the outcome of direct toxic effects of leaf allelochemicals
that debilitate the larval immune system or indirect conse-
quences of the altered herbivore performance and development
of the insect.28,87

Finally, we asked whether the different plant-based diets had an
impact on the gut microbiota, which is known to influence insect
physiology by the modulation of caterpillar nutrition and metab-
olism, development and immune responses.88,89 Although we did
not observe a major influence of the diet on the bacterial load or
alpha diversity of the gut microbiota, CCA analyses revealed sig-
nificant differences in bacterial composition between larvae fed
on artificial diet and tomato plant-based diets. Similar changes
in the microbiota composition associated with the source of the
ingested food (artificial diet, pepper and tomato) were previously
observed in S. exigua larvae byMartínez-Solís et al.44 Nevertheless,
when only plant-based diets were included in the multivariate
canonical analysis, the differences disappeared. This may indicate
that changes in the leaf nutritional quality or phytochemicals
induced by mycorrhization and/or exposition to herbivory were
not/or just slightly influencing the microbiota gut composition
of the caterpillar.
In conclusion, AMF colonization in tomato plants increased the

susceptibility of the generalist pest S. exigua to the bacterial ento-
mopathogen B. thuringiensis and did not negatively affect the
action of the viral entomopathogen baculovirus. These findings
support the compatibility of AMF inoculation with the use of bac-
terial and viral entomopathogens, and support the design of pest
control strategies combining the effects of both treatments. Nev-
ertheless, further studies using different combinations of plants,
AMF, herbivores and entomopathogens are needed to extend
these results to other crops and pest systems.
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