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Abstract
Research has shown that soil-borne beneficial microorganisms can enhance plant growth, productivity, and resistance against 
pests and pathogens and could thus serve as a sustainable alternative to agrochemicals. To date, however, the effect of soil-
beneficial microbes under commercial crop production has been little assessed. We here investigated the effect of root inocu-
lation with nine well-characterized bacterial and fungal strains and two consortia on tomato performance under intensive 
tomato crop management practices. We measured the impact of these root inoculations on plant growth, fruit quality, yield, 
and pest and pathogen incidence. While most microbial strains showed weak effects, we found that the fungal strains Tricho-
derma afroharzianum T22 and Funneliformis mosseae significantly increased marketable tomato yield. Moreover, we found 
that inoculation with most of the fungal strains led to a significant reduction in the incidence of the devastating leaf-mining 
pest Tuta absoluta, while this effect was not observed for bacterial inoculants. In addition, we found that microbial inocula-
tions did not impact the incidence of introduced natural pest enemies, supporting their compatibility with well-established 
integrated pest management strategies in horticulture. In summary, the observed general positive effects of soil microbes on 
tomato yield and resistance reinforce the move toward broader adoption of microbial inoculants in future crop production, 
ultimately improving agricultural sustainability.
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1  Introduction

The urgent need to enhance agricultural sustainability has 
compelled scientists, agroindustry, growers, and consum-
ers to seek innovative approaches in order to mitigate the 
reliance on agrochemicals, all while ensuring optimal 
crop yields (Arora 2018). One emerging environmen-
tally friendly biotechnology is the use of soil-beneficial 
microbes, applied as bioinoculants, to improve plant 
growth and productivity across a variety of systems (Berg 
2009; Martínez-Medina et al. 2011; Barea 2015; Trivedi 
et al. 2017; Ab Rahman et al. 2018; Compant et al. 2019; 
Singh et al. 2020). Furthermore, several of these microbes 
have been shown to antagonize soil pathogens (Minchev 
et al. 2021) and boost the resistance of crops to a broad 
spectrum of pests and diseases, a phenomenon known as 
induced resistance (IR) (Pieterse et al. 2014; De Kesel 
et al. 2021). Therefore, the multifaceted functionality of 
soil-beneficial microbes could be harnessed to potentially 
increase crop productivity via direct boosting of resource 
acquisition and indirectly, by reducing yield losses due 
to pest and pathogen attacks (Li et al. 2022). Yet soil-
beneficial microbes constitute a complex and diverse com-
munity of bacteria or fungi (Bakker et al. 2018), with their 
cumulative effect shown to be context- and crop-dependent 
(Lee Díaz et al. 2021). This context dependency and envi-
ronmental impact on microbe functionality make the out-
come of their application unpredictable, thereby currently 
limiting their competitiveness for commercial exploitation 
when compared to agrochemicals. Consequently, more 
studies in proper commercial settings are needed to test 
the efficacy of soil microbes for more sustainable agricul-
ture practices.

Beneficial soil microbes used as bioinoculants include 
several functional groups, such as the plant growth–pro-
moting rhizobacteria (PGPR), the plant growth–promot-
ing fungi (PGPF), and the arbuscular mycorrhizal fungi 
(AMF) (Woo et al. 2014; Aamir et al. 2020; Bitterlich et al. 
2020; Bamisile et al. 2021). Besides their growth-promot-
ing properties, PGPR have been shown to act as efficient 
biological control agents, either by direct pathogen or 
disease suppression or through IR (Orozco-Mosqueda 
et al. 2021). Bacteria from the genera Bacillus and Pseu-
domonas are among the most studied and best character-
ized PGPR (Santoyo et al. 2012; Orozco-Mosqueda et al. 
2021; Elnahal et al. 2022), as evidenced by the high num-
ber of commercial biofertilizer and biocontrol products 
containing them on the market (Aamir et al. 2020). Simi-
larly, the ability of some PGPF species from the genus 
Trichoderma to promote plant growth and resistance to 
pests and pathogens has been widely acknowledged during 
the last decades (Harman et al. 2004; Martínez-Medina 

et al. 2014; Guzmán-Guzmán et al. 2019; Poveda 2021; 
Papantoniou et al. 2021; Woo et al. 2022; Modrzewska 
et al. 2022). However, their current success in the market 
as bioinoculants is primarily attributed to their mycopar-
asitic capacity, constituting 64.8% of available products 
claiming to be fungicidal (Woo et al. 2014). AMF are obli-
gate biotrophs that establish symbiotic associations with 
the roots of most terrestrial plants, constituting one of the 
most studied plant-fungal interactions (Pozo et al. 2021). 
This symbiosis has been shown to improve plant nutrient 
uptake (van der Heijden et al. 2015; Sardans et al. 2023) 
and increase plant tolerance to biotic and abiotic stresses 
(Pozo & Azcón-Aguilar 2007; Rivero et al. 2018, 2021; 
Dejana et al. 2022; Ramírez-Serrano et al. 2022). Accord-
ingly, the use of AMF has been amply proposed in sustain-
able agriculture (Smith & Smith 2011; Jeffries & Barea 
2012; Barea 2015; Salomon et al. 2022a; Martin & van 
der Heijden 2024). Despite often lacking viable propagules 
(Salomon 2022b), commercially available AMF-based 
inoculants are steadily increasing on the market (Bitter-
lich et al. 2020). Commercial products containing AMF 
are mostly used in agriculture as biofertilizers, mainly for 
nutrient and growth promotion benefits, but also for stress 
alleviation (Basiru et al. 2021). Finally, entomopathogenic 
fungi (EPF) constitute another important group of fungi 
in agroecosystems because of their well-known ability 
to infect and kill insect and mite pests (Quesada-Moraga 
2020). Besides this direct antagonism, EPF can inter-
act and colonize plants endophytically, promoting plant 
growth and negatively affecting pathogens and phytopha-
gous insects without direct contact with them (Gange et al. 
2019; Quesada-Moraga 2020; Rasool et al. 2021; Bamisile 
et al. 2021). EPF have been used in the biological control 
of insects for more than 150 years. Currently, several com-
mercial products are available, with more than 170 species 
formulated as biopesticides (Bamisile et al. 2021).

Besides single microbe applications, the design of syn-
thetic microbial communities (SynComs) for improving 
plant growth and health is receiving increasing interest 
within the scientific community and on the market (Liu et al. 
2020; Trivedi et al. 2020; Batista & Singh 2021; Minchev 
et al. 2021). SynComs can offer extended functionality 
compared to single-strain inoculations for the biocontrol of 
foliar and soil pathogens, as they can simultaneously com-
bine different modes of action (Minchev et al. 2021). For 
instance, the combined application of EPF and AMF showed 
functional complementarity for plant protection and growth 
promotion (Zitlalpopoca-Hernandez et al. 2022).

Nonetheless, despite the widespread optimism for using 
these microbial inoculants to improve plant growth and 
health, most of the research has been performed under 
highly controlled conditions, posing challenges to the 
successful transfer and adoption of this technology in 
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agriculture (Mitter et al. 2019; Saad et al. 2020). Indeed, 
plant-microbe interactions and their effect on plant growth 
and health are often conditioned by environmental factors 
(Saad et al. 2020; Lee Díaz et al. 2021). For example, 
temperature (Di Lelio et al. 2021), nitrogen or phospho-
rous fertilization (Ramírez-Serrano et al. 2022; Dejana 
et al. 2022), soil water content (Orine et al. 2022), and 
light intensity (de La Hoz et al. 2021) and quality (Saha 
et al. 2022) have all been reported to impact plant-microbe 
interactions and microbial benefits for host plants. In other 
words, the intricate nature and context dependency of 
these interactions emphasize the need to consider how var-
iable environmental conditions and agricultural practices 
can potentially impede the success and reproducibility of 
microbial inoculation results under field conditions (Com-
pant et al. 2019). Consequently, it is essential to perform 
rigorous assessments of previously characterized plant-
beneficial microorganisms within real production sys-
tems. Such evaluations serve not only to gauge microbial 
impacts on the target crop under commercial production 
conditions, but also to ascertain their compatibility with 
commonly used crop management practices.

To address this gap, we performed a comprehensive 
screening of microbial inoculants in order to evaluate their 
impact on plant protection against pathogens and pests, 
as well as their effects on plant growth and crop produc-
tivity under commercial production conditions (Fig. 1). 
We used tomato (Solanum lycopersicum, Fig. 1), the sec-
ond most produced vegetable crop worldwide, as a model 
system. We selected well-characterized strains of bacte-
ria and fungi and previously designed SynComs to test 
their impact on yield and pest resistance in a commercial 
greenhouse that uses standard tomato management prac-
tices, including integrated pest management (IPM) meth-
ods (Acebedo et al. 2022). We predicted that microbial 
inoculations would benefit plant performance by reducing 

susceptibility to biotic stressors without major costs in 
plant growth or production even under standard crop man-
agement practices.

2 � Material and methods

2.1 � Microbial treatments

We performed a large-scale experiment in a commercial 
greenhouse located at the Estación Experimental, Cajamar, 
Spain, with a total of 12 microbial treatments. Microbes 
were selected based on previous results obtained under 
controlled conditions within the Marie Skłodowska-Curie 
Innovative Training Network (MiRA, Nb. 765290). Our 
objective was to validate their reliability under commer-
cial production conditions. Thus, the inoculants were pre-
pared following the same methodology as in the previous 
studies that were conducted for their selection. The treat-
ments included (1) two bacteria: Bacillus amyloliquefaciens 
CECT8238 (BA) and Pseudomonas azotoformans F30A 
(PA), (2) two strains of Trichoderma afroharzianum: T22 
(T2) and T. harzianum T78 (T7), (3) two EPF: Beauveria 
bassiana KVL 13-39 (BB) and Metarhizium robertsii KVL 
12-35 (MR), and (4) three AMF: Rhizophagus irregularis 
MUCL57021 (RI), Funneliformis mosseae BEG12 (FM), 
and Claroideoglomus etunicatum EEZ163 (CE). In addition, 
(5) two SynComs (M1, M2), described below, and (6) a con-
trol treatment without soil microbe addition (non-inoculated, 
NI) were included. BB and MR strains were obtained from a 
collection of entomopathogenic fungal cultures at the Uni-
versity of Copenhagen. RI, T2, PA, and BA strains were 
obtained from the microbial collection of Koppert B.V. (The 
Netherlands). FM and CE inoculants were obtained from the 
AMF collection of Estación Experimental del Zaidín–CSIC 

Fig. 1   Picture showing tomato 
plants from the experiment 
conducted under commercial 
production conditions, which 
included common tomato crop 
management practices. Photo 
credits: Guadalupe Zitlalpo-
poca-Hernandez.
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(Spain). Finally, T7 (CECT 20714) was obtained from the 
Spanish collection of type cultures (Valencia University).

The bacterium B. amyloliquefaciens was cultured on tryp-
tone soy agar (TSA) and grown at 28 °C for 24 h. For spore 
production, liquid Difco sporulation medium (Nicholson & 
Setlow 1990) was inoculated with a single bacterial colony 
and incubated at 28 °C for 48 h with rotary shaking at 200 
rpm. Spore concentration of the liquid culture was quantified 
using a Neubauer hemocytometer, and then, the culture was 
centrifuged for 15 min at 5000 rpm to separate the spores 
from the growing medium. Finally, the recovered spores 
were resuspended in sterile water to a concentration of 1 × 
10⁷ spores/mL. For inoculation, 1 mL of spore solution was 
applied to each plant in the root system during transplanting 
(Minchev et al. 2021). The bacterium P. azotoformans was 
cultured on TSA and grown at 28 °C for 24 h. A pre-culture 
was prepared in tryptone soya broth (TSB) inoculated with 
a single colony and incubated overnight at 28 °C with rotary 
shaking at 200 rpm. Next, 1 mL of pre-culture was added to 
25 mL of TSB and incubated at 28 °C for 2 h 30 min with 
rotary shaking at 200 rpm to reach the exponential growth 
phase. Then, the cell concentration was quantified by meas-
uring the optical density (620 nm) of the bacterial culture 
using a spectrophotometer. The bacterial culture was centri-
fuged for 15 min at 5000 rpm to separate the bacterial cells 
from the growing medium. Finally, the obtained cells were 
resuspended in sterile water to a concentration of 1 × 10⁷ 
CFU/mL. For inoculation, 1 mL of bacterial solution per 
plant was applied to the root system during transplanting 
(Minchev et al. 2021). The fungus T. afroharzianum strain 
T22 was cultured on potato dextrose agar (PDA) and grown 
at room temperature for 7 days. The sporulated plates were 
scraped using a sterile spatula and sterile water. The result-
ing spore suspension was filtered using a sterile miracloth 
filter to remove remaining mycelia, and the spore concentra-
tion was quantified using a Neubauer hemocytometer and 
adjusted to 1 × 10⁷ spores/mL. For inoculation, 1 mL of 
spore suspension was added to the root system of each plant 
during transplanting (Minchev et al. 2021). The fungus T. 
harzianum strain T78 was cultured on PDA. The fungal 
inoculum was prepared by adding aseptically a square piece 
of the fungal culture on a sterile mix of vermiculite and 
oat (Martínez-Medina et al. 2009) and incubated at 28 °C 
in the dark for 5 days. The inoculum, containing 1 × 109 
spores/g, was mixed with the substrate in a proportion of 1 g 
per Kg of substrate (Martínez-Medina et al. 2013). The EPF 
B. bassiana and M. robertsii were cultured in Sabouraud 
dextrose agar (SDA) and grown at 24 °C in darkness for 3 
weeks. The sporulated plates were scraped using a sterile 
spatula, and the spores were recovered in a sterile solution 
of Triton X (0.05 %). The spore concentration was quanti-
fied using a Neubauer hemocytometer and adjusted to 1 × 
108 spores/mL. Inoculation was done by adding 1 mL of 

spore suspension per plant directly to the roots during trans-
planting (Zitlalpopoca-Hernandez et al. 2022). The AMF R. 
irregularis was grown in vitro on a minimal (M) medium 
with Agrobacterium rhizogenes-transformed carrot (Daucus 
carota) roots as host (St-Arnaud et al. 1996). Spore extrac-
tion was performed by adding citrate buffer (0.01 M, pH = 
6) to the AMF culture in a proportion of 3:1 (v/v) and main-
tained for 1 h on a rotary shaker to dissolve the agar. The 
spores were recollected using sieves with mesh sizes of 250 
and 53 μm and resuspended in sterile water at 1000 spores/
mL. For inoculation, 1 mL of spore solution was applied 
to the root system of each plant (Minchev et al. 2021). The 
AMF F. mosseae and C. etunicatum were maintained as 
living inocula on mixed cultures of Trifolium repens and 
Sorghum vulgare in vermiculite‐sepiolite substrate. The 
inoculants consisted of the substrate containing colonized 
root fragments, mycelia, and spores. For inoculation, 10% 
(v/v) of mycorrhizal inocula were mixed with the substrate 
at transplanting (Rivero et al. 2018).

Further, two SynComs were used, which were selected 
based on previous studies (Minchev et al. 2021; Zitlalpo-
poca-Hernandez et al. 2022). The M1 inoculum included B. 
amyloliquefaciens, P. azotoformans, and T. afroharzianum 
T22 at concentrations of 1 × 10⁷ CFU/mL each and R. irreg-
ularis at a concentration of 1000 spores/mL (Minchev et al. 
2021). The M2 inoculum included M. robertsii and B. bassi-
ana both inoculated at a concentration of 1 × 108 spores/mL 
and R. irregularis at a concentration of 1000 spores/mL. For 
both SynComs, 1 mL/plant was applied to the root system 
during transplanting.

2.2 � Plant material and growing conditions

Solanum lycopersicum cv Money maker seeds (Vreeken’s 
Zaden, The Netherlands) were surface sterilized by immer-
sion in 5% sodium hypochlorite solution for 10 min and 
rinsed three times in sterile water for 10 min each. The sur-
face sterilized seeds were sown in sterile vermiculite and 
incubated for 7 days in a greenhouse at 24 °C:16 °C day-
night with a photoperiod of 16 h:8 h light-dark and 70% of 
relative humidity.

2.3 � Quantification of microbial colonization

Mycorrhizal colonization was assessed by quantifying the 
percentage of root length containing fungal structures upon 
staining. Briefly, the roots were washed with tap water, 
cleared in 10% KOH, acidified with 2% acetic acid, and 
stained with 5% black ink (Lamy, Germany) dissolved in 2% 
acetic acid (García et al. 2020). After removing the excess 
ink, the roots were randomly placed in a Petri dish with 
gridlines, and the percentage of root length colonized by 
AMF was quantified under a binocular microscope using 
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the gridline intersect method described by Giovannetti and 
Mosse (1980).

For PGPR and PGPF, we assessed the presence of each 
microbe in rhizospheric soil as described by Minchev et al. 
(2021). For this, we sampled 1 g of rhizospheric soil and 
diluted it in 9 mL of sterile tap water. Samples were then 
homogenized in a horizontal shaker for 1 h at 350 rpm. To 
detect Trichoderma, samples were plated on PDA + igepal 
(11 mL/L) + tetracycline (50 μg/mL), and for bacteria, sam-
ples were plated on TSA + natamycin (0.1 g/L). The plates 
were then incubated at 25 °C, and the presence or absence 
of the microbes was determined after 24 h for bacteria and 
after 48 h for Trichoderma (Minchev et al. 2021).

For EPF, fresh roots were cut into pieces of 1 cm and 
mixed. Fifteen pieces of roots were selected and homog-
enized with a pestle in 5 mL of sterilized Triton X (0.05%). 
Then, 100 μL of the homogenate were spread in Petri dishes 
with selective media (500 mL of SDA containing agar 6 g, 
glucose 10 g, peptone 5 g, dodine 0.2 mL of 0.1 g/mL, strep-
tomycin 0.5 mL of 0.6 g/mL, tetracycline 0.5 mL of 0.05 g/
mL, and cycloheximide 1 mL of 0.05 g/mL, pH 6.3–6.5) 
and incubated at 24 °C in darkness during 14 days. Fungal 
colonies with morphological features to the inoculated EPF 
species were quantified as colony-forming units (CFU) on 
the 7th and corroborated on the 14th day.

2.4 � Experimental set‑up

One-week-old tomato seedlings were transferred to start-
ing trays, with cell dimensions 2.9 × 2.9 × 6.8 cm—con-
taining blond seedling peat (Kekkilä LSM 0 R8406, Projar, 
Valencia, Spain)-zeolite-perlite (1:1:1) mixture and inocu-
lated with the microbial treatments described previously. 
Inoculated seedlings were grown in a commercial nursery 
(ACRENA SAT 251, El Ejido, Spain; 36°, 47′, 52.9″ N; 2°, 
43′, 36.3″ W) for 4 weeks. Before transplanting to the green-
house, microbial colonization of all beneficial microbes 
was assessed in a subset of plants, confirming the success-
ful establishment of all microorganisms in close to 100% 
of the plants (Table S3). On September 3, 2020, the plants 
were transplanted to a commercial production greenhouse 
(Estación experimental Cajamar, Paraje las Palmerillas, El 
Ejido, Almería; 36°, 47′, 36.3″ N; 2°, 43′, 15.2″ W) and 
maintained during the whole crop cycle from September 
2020 to March 2021. The greenhouse consisted of a typi-
cal “raspa y amagado” type (Ávalos‐Sánchez et al. 2022), 
37.8 m long and 23.2 m wide with a total area of 877 m2 
and usable area of 720 m2, passive ventilation (25.0% win-
dow surface) with side windows (north and south sides) and 
zeniths, covered with anti-trip mesh. The microbial inocula-
tion treatments were organized following a randomized com-
plete block design, with four blocks. Each block contained 
12 treatments, and each treatment in all blocks consisted of 

a group of six plants (pseudo-replicates) (Fig. S1; N = 12 
treatments × 4 blocks × 6 pseudo-replicates = 288 plants).

2.5 � Application of biological control products, 
pheromones, and pollinators

Two weeks after transplanting, the predatory mirid bug 
Nesidiocoris tenuis (Hemiptera: Miridae) (NESIDIOcon-
trol, Agrobio, Spain) was released in the greenhouse with 
a density of 0.5–1.5 individuals/m2 following the product 
label recommendation to reduce incidence of whiteflies 
(Hemiptera: Sternorrhyncha) and Tuta absoluta (Lepidop-
tera: Gelechiidae) on tomato plants. In addition, pheromones 
for the mating disruption of T. absoluta were released during 
the whole cropping season. To ensure pollination of tomato 
flowers from the start of flowering, bumblebees Bombus ter-
restris (Hymenoptera: Apidae) were released 3 weeks post 
transplantation (wpt), placing one hive (Agrobio, Spain) in 
the middle of the greenhouse.

2.6 � Irrigation and fertilization

The irrigation scheme and nutrient supply followed through-
out the cropping season correspond to realistic tomato com-
mercial fertilization regimes in production systems in the 
area (detailed in Table S1). Nutrient content in soil and 
irrigation water (nutrient solution) was evaluated periodi-
cally to adjust to the crop needs for nutrient supply. Specifi-
cally, phosphorus was measured by visible spectrophotom-
etry using the compound phosphorous vanadate molybdate 
(Tandon et al. 1968). Nitrates were measured spectropho-
tometrically at 220 and 275 nm (Norman & Stucki 1981). 
Ammonia was measured by the Nessler reagent method 
(Yuen & Pollard 1954). Sodium, calcium, potassium, mag-
nesium, iron, copper, manganese, and zinc were determined 
by atomic absorption/emission (Isaac & Kerber 2015). Car-
bonates and bicarbonates were measured by titration with 
0.01 N sulfuric acid (Allison et al. 1954). Chlorides were 
also measured by volumetry with silver nitrate between 0.01 
and 1 N using potassium chromate as an indicator (Mohr’s 
titration). Boron was determined by spectrophotometry with 
the azomethine reaction (John et al. 2006). Sulfates were 
measured by precipitation of barium sulfate.

2.7 � Response variables and data collection

In total, we measured 17 response variables related to plant 
growth and yield and plant resistance to pathogens and 
insect pests (see below and Table S2). Data collection for 
each response variable was done on the below-mentioned 
specific time points, mostly for practical reasons, unless oth-
erwise specified.



	 Z. Minchev et al.55  Page 6 of 16

2.8 � Plant growth, nutritional status, and yield

As a proxy of plant growth, plant height from the soil surface 
to the top of the shoot of each plant (six plants per treatment 
per block) was measured on December 3, 2020 (12 wpt). As 
a proxy for plant productivity, we quantified the number of 
inflorescences per plant (six plants per treatment per block) 
on October 26, 2020 (8 wpt), before the onset of the fruit 
collection period. Leaves for total leaf carbon and nitrogen 
content measurements were sampled on January 21, 2021 
(19 wpt), evaluating three plants per treatment per block. 
Leaves were sampled, immediately frozen in liquid nitrogen, 
and lyophilized. Then, lyophilized leaves were ground in a 
Tissue Lyser II (Qiagen, Germany) using metal beads at a 
maximum speed for 3 min. Two milligrams were weighed 
from each sample to measure total carbon (C) and nitro-
gen (N) content, using a Flash 1112 Elemental Analyzer 
(Thermo Scientific, MA, USA).

Fruit productivity (average g/plant) was evaluated regu-
larly, when fruits were in an optimal state of ripeness for col-
lection, for a total of 10 time points, between November 12, 
2020 (10 wpt), and February 4, 2021 (22 wpt). Fruits were 
sampled from six plants per treatment per block, and fruit 
biomass was evaluated at the block level. Tomato fruits were 
classified by size (size GG 82–102 mm; size G 67–82 mm; 
size M 57–67 mm; size MM 47–57 mm) and by categories 
(first, second, and non-commercial). Fruits were considered 
non-commercial when their size was too small (< 45 mm in 
diameter), when they showed the presence of pathogen dam-
age, cracks, blossom-end rot, or blotchy ripening or when 
they were misshapen.

2.9 � Fruit quality and nutraceutical value

Parameters such as fruit dry weight (determined after dry-
ing the fruits in a forced air stove at 70 °C for 48 h), acidity 
percent (acid-base volumetry using 1 N NaOH as base and 
phenolphthalein indicator), Brix or total soluble solids (man-
ual refractometer), and maturity index (the ratio between the 
content of total soluble solids and assessable acidity) were 
assessed on December 16, 2020 (14 wpt) on one fruit per 
treatment per block (n = 4).

Polyphenol and carotenoid content in fruits were evalu-
ated on February 25, 2021 (23 wpt) on one fruit per treat-
ment per block (n = 4). Polyphenols were measured by the 
spectrophotometric method of Folin‐Ciocalteau (Georgé 
et al. 2005) using a standard curve of gallic acid from 0 
to 1000 ppm at 760 nm (double ultraviolet‐visible beam, 
Unicam Helios Alpha) and expressed as milligrams of gallic 
acid/100 g dry fruit biomass. Lycopene and beta-carotene 
content of fruits were measured with an acetone‐hexane 
extraction and spectrophotometric determination at 487.5 

nm (Sadler et al. 1990) with modifications (Rousseaux et al. 
2005) and expressed as mg/100 g fresh fruit.

2.9.1 � Pest and disease incidence

The incidence of thrips, T. absoluta, whiteflies, and powdery 
mildew was evaluated on December 3, 2020 (12 wpt), when 
the presence of these pests or diseases was high enough to be 
accurately assessed simultaneously. For thrips, occurrence 
was assessed by counting the number of leaves per plant pre-
senting lacerations caused by thrips, evaluating three plants 
per treatment per block. The incidence of T. absoluta was 
estimated as the percentage of plants per treatment display-
ing mines (the typical lesions caused by the larvae of this 
species), evaluating the six plants per treatment per block. 
Whiteflies were evaluated using yellow sticky traps for a 
period of 4 weeks until December 3, 2020 (12 wpt). One 
sticky trap was used per treatment per block, placed in the 
middle of the six plants of each block (Fig. S1). The number 
of whiteflies per trap was counted. Finally, powdery mil-
dew prevalence was measured as the percentage of infected 
plants per treatment, evaluating three plants per treatment 
per block.

2.9.2 � Abundance of natural enemies

The abundance of the predatory mirid bug Nesidiocoris 
tenuis, released in the greenhouse at the beginning of the 
cropping season for the control of whiteflies and T. absoluta, 
was evaluated on December 3, 2020 (12 wpt) at the same 
time point as pest incidence. As for whitefly incidence (see 
above), one yellow sticky trap per treatment per block was 
evaluated by counting the number of N. tenuis per trap.

2.9.3 � Statistical analysis

Data were analyzed using R statistical language, version 
4.1.1 (R Development Core Team 2021). Figures were pro-
duced using the package ggplot2 (Wickham 2009). The 
effects of the 12 microbial treatments (including the con-
trol) on each of the 17 different response variables were 
analyzed with linear mixed- or generalized mixed-effect 
models (lmer or glmer functions in the lmerTest package 
(Kuznetsova et al. 2017)), with treatments as fixed fac-
tors and blocks as random factors as follows: lmer(var ~ 
Treatment + (1|Block) + (1|Block:Plot)) (Table S2). Gen-
eralized mixed-effect models were performed when data 
did not meet normality assumptions as shown in Table S2. 
For productivity-related variables, the treatment effect 
was tested using a repeated measures mixed-effect model 
as follows: lmer(Production ~ Treatment + (1|Block) + 
(1|Block:Day)). If significant differences among treat-
ments were detected, the different microbial treatments 
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were compared to the control (non-inoculated) treatment 
with multiple comparisons of means using the multcomp 
package (Hothorn et al. 2008). Model validation was per-
formed graphically by inspecting the residuals and fitted 
values (Zuur and Ieno, 2016). Moreover, to visualize the 
overall effect of soil microbial inoculation on plant resist-
ance, we produced radar plots using scaled values for each 
of the four pests and pathogens studied (function ggradar 
in ggplot2) and calculated the area of each polygon gener-
ated for each treatment using R.

3 � Results

3.1 � Effect of soil‑beneficial microbes on plant 
growth, nutritional status, and flowering

For plant height, we found weak negative effects of the soil 
microbial treatments, only given by C. etunicatum. This 
AMF decreased tomato plant height on average by 12.96 
cm compared to the control plants (Fig. 2A, treatment effect; 
Chisq 11,284 = 25.58, p = 0.01). We however found no effect 
of soil microbial treatments on C and N leaf content, result-
ing in an unaltered C/N (Chisq11,144 = 16.63, p = 0.12; 
Fig. 2B) nor on the number of inflorescences (Chisq11,144 = 
9.73, p = 0.56; Fig. 2C).

3.2 � Effect of soil‑beneficial microbes on fruit yield

Soil microbial inoculations had significant effects on total 
tomato production (Chisq11,480 = 69.85, p < 0.001), as well 
as on commercial quality tomato production (Chisq11,480 = 
74.58, p < 0.001). Specifically, F. mosseae (z = 4.35, p < 
0.001) and T. afroharzianum T22 (z = 4.65, p < 0.001) inoc-
ulated plants showed a 13% and 15% higher total productiv-
ity than control plants, respectively (Fig. 3A). Even more 
so, the same soil microbes increased commercial quality 

150

175

200

225

250

8

9

10

11

5

10

15

20

25

NI RI FM CE PA BA T2 T7 BB MR M1 M2

Plant height (cm)

A

CN ratio

Number of inflorescences

B

C

*

Control
AMF

Bacteria

Trichoderma
EPF

SynComs

Fig. 2   Impact of microbial inoculation on A plant height, B leaf 
carbon-nitrogen ratio, and C number of inflorescences. Plants were 
inoculated with R. irregularis (RI), F. mosseae (FM), C. etunicatum 
(CE), P. azotoformans (PA), B. amyloliquefaciens (BA), T. afrohar-
zianum T22 (T2), T. harzianum T78 (T7), B. bassiana (BB), M. rob-
ertsii (MR), consortium 1 (M1) including RI+PA+BA+T2, and con-
sortium 2 (M2) including RI+BB+MR. Non-inoculated plants were 
included as a control (NI). Boxes represent the interquartile range, 
black lines represent the median, whiskers represent the maximum 
and minimum within 1.5 times the interquartile range, and black dots 
represent outliers. The asterisk indicates statistically significant dif-
ferences compared to the control treatment (red boxplots) (*p < 0.05).
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fruit production by 12% (z = 3.88, p < 0.001) and 14% (z = 
4.71, p < 0.001) respectively at the end of the experiment 
as compared to the non-inoculated control plants (Fig. 3B).

3.3 � Effect of soil‑beneficial microbes on fruit quality 
and nutraceutical value

We did not observe any effect of the microbial inocula-
tions on Brix (Chisq11,48 = 11.02, p = 0.44), maturity index 
(Chisq11,48 = 14.19, p = 0.22), and %Dry weight (Chisq11,48 
= 9.43, p = 0.58). The only fruit quality parameter signifi-
cantly affected by the microbial treatments was the %Acid-
ity (Chisq11,48 = 27.07, p = 0.01), in which fruits from C. 
etunicatum inoculated plants showed an increase of 0.04% 
in acidity compared to the control treatment (z = − 2.25, p 
= 0.03; Table S3).

Furthermore, regarding fruit nutraceutical value, we did 
not find that fruit polyphenols’ content was significantly 
affected by the soil microbial treatment (Chisq11,48 = 6.11, 
p = 0.87, Fig. S2A), as well as carotenoids’ content of fruits 
(lycopene, beta-carotene, and total carotenoids) were also 
not significantly altered by soil microbes (Chisq11,48 = 16.79, 
p = 0.11, Fig.S2B; Chisq11,48 = 7.69, p = 0.74, Fig. S2C and 
Chisq11,48 = 15.70, p = 0.15, Fig. S2D, respectively).

3.4 � Effect of soil‑beneficial microbes on natural 
enemies

To evaluate any potential impact of the microbial inocu-
lants on applied beneficial insects, we evaluated the abun-
dance of the predatory mirid bug N. tenuis, released in 

the greenhouse at the beginning of the cropping season 
for the control of whiteflies and T. absoluta. Nesidioco-
ris tenuis abundance was affected by microbial treatments 
(Chisq11,48 = 19.82, p = 0.03), but no significant differ-
ences were observed between the microbial treatments and 
the control plants (Fig. S3).

3.5 � Effect of soil‑beneficial microbes on pest 
and disease incidence

We found that the incidence of T. absoluta was signifi-
cantly impacted by microbial inoculation (Chisq11, 284 = 
19.77, p = 0.048). In particular, R. irregularis (z = − 2.69, 
p = 0.007), F. mosseae (z = − 2.30, p = 0.02), C. etuni-
catum (z = − 2.30, p = 0.02), T. afroharzianum T22 (z 
= − 2.30, p = 0.02), T. harzianum T78 (z = − 1.97, p = 
0.048), M. robertsii (z = − 2.68, p = 0.008), and the con-
sortium M2 (z = − 1.97, p = 0.048) treatments signifi-
cantly decreased the percentage of plants damaged by the 
leaf miner as compared to the control treatment, with aver-
age reductions ranging from 60% for T. harzianum T78 up 
to 90% for R. irregularis and M. robertsii (Fig. 4A).

Microbial treatments also significantly affected thrip 
incidence (Chisq11, 144 = 21.95, p = 0.03). This effect was 
evidenced by a reduction of the pest damage in plants inoc-
ulated with either T. afroharzianum T22 (z = − 2.31, p = 
0.02) or B. bassiana (z = − 2.15, p = 0.03) compared with 
control plants (Fig. 4B). Whitefly incidence was not sig-
nificantly affected by the microbial treatments (Chisq11,48 
= 11.38, p = 0.41; Fig. 4C). Regarding diseases, powdery 
mildew was the only pathogen that naturally appeared on 
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Fig. 3   Impact of microbial inoculants on tomato production. Scat-
ter plots show only microbial treatments with a significant impact 
on tomato production as compared to the control treatment. A Total 
tomato production and B commercial quality tomato production. 
Plants were inoculated with F. mosseae (FM, blue) and T. afrohar-

zianum T22 (T2, purple). Non-inoculated plants were included as a 
control (NI, red). Lines represent the average yield increase across 
time, dots represent the mean tomato biomass, and error bars repre-
sent ± one standard error. Asterisks indicate statistically significant 
differences compared to the control (***p < 0.001).



Beneficial soil fungi enhance tomato crop productivity and resistance to the leaf-mining pest… Page 9 of 16  55

the crop. No significant differences between microbial 
treatments were observed in the incidence of powdery 
mildew (Chisq11,144 = 8.22, p = 0.69; Fig. 4D).

3.6 � Compound effect of soil‑beneficial microbes 
on plant resistance

As represented in radar plots, where smaller areas indicate 
a higher level of plant resistance, the polygons correspond-
ing to microbial treatments exhibit reduced areas relative 
to control plants (represented in red in Fig. 5), except for 
C. etunicatum (see relative areas in Fig. 5). Among them, 
the smallest area was displayed by the AMF R. irregularis, 

with a decrease of 95% compared to the control treatment. 
These results suggest that besides C. etunicatum, soil 
microbial inoculations increase the general resistance of 
tomato plants against the four pests and pathogens studied.

4 � Discussion

In this study, by testing diverse plant-beneficial microor-
ganisms under commercial settings, we demonstrated the 
viability of using microbial inoculants for crop protection 
and yield improvement for a commercial crop production 
system. We have identified microbial strains that can be used 
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number of whiteflies per trap, and D percent of plants diseased 
by powdery mildew. Plants were inoculated with: R. irregularis 
(RI), F. mosseae (FM), C. etunicatum (CE), P. azotoformans (PA), 
B. amyloliquefaciens (BA), T. afroharzianum T22 (T2), T. harzi-
anum T78 (T7), B. bassiana (BB), M. robertsii (MR), consortium 

1 (M1) including RI+PA+BA+T2, and consortium 2 (M2) includ-
ing RI+BB+MR. Non-inoculated plants were included as a control 
(NI). Boxes represent the interquartile range, black lines represent the 
median, whiskers represent the maximum and minimum within 1.5 
times the interquartile range, and black dots represent outliers. Aster-
isks indicate a statistically significant difference compared to the con-
trol (red boxplots) (*p < 0.05, **p < 0.01).
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Fig. 5   Radar plots showing the overall effects of different soil micro-
bial inoculations on plant resistance against pests and pathogens. 
Each panel represents the level of resistance against Tuta absoluta, 
thrips, whiteflies, and mildew of plants inoculated with each tested 
microbe with respect to control plants’ resistance (red polygons). 
Microbial treatments include Rhizophagus irregularis, Funneliformis 
mosseae, Claroideoglomus etunicatum, Pseudominas azotoformans, 
Bacillus amyloliquefaciens, Trichoderma afroharzianum T22, Tricho-
derma harzianum T78, Beauveria bassiana, Metarhizium robertsii, 

SynCom M1 (R. irregularis + P. azotoformans + B. amyloliquefa-
ciens + T. afroharzianum T22), and SynCom M2 (R. irregularis + 
B. bassiana + M. robertsii). Radar plots show the scaled values for 
the percent damage by T. absoluta per plant, the number of dam-
aged leaves per plant by thrips, the number of whiteflies per trap, and 
the average percent of leaves per plant infested by powdery mildew. 
Higher values mean that the attack is stronger, and plant resistance is 
low (and vice versa). The table shows the scaled area of each polygon 
relative to the polygon area of the control.
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as biostimulants and bioprotectors under real tomato pro-
duction conditions, thus confirming their potential as bioin-
oculants to improve agricultural sustainability. Considering 
all measured traits, our results point out a prominent effect 
of fungal inoculants (including different AMF, EPF, and 
Trichoderma strains) in promoting plant resistance and, in 
some cases, improving crop yield, while the tested bacterial 
inoculants did not show any significant effect on the evalu-
ated parameters.

4.1 � Soil‑beneficial microbe effect on tomato growth 
and yield

Plant-beneficial microbes such as PGPR, Trichoderma, 
AMF, and EPF have been widely reported to improve plant 
growth and nutritional status (Quesada-Moraga 2020; 
Orozco-Mosqueda et al. 2021; Salomon et al. 2022a, b; 
Woo et al. 2022). Contrary to previous observations, the 
microbial inoculation did not impact plant height or leaf C/N 
under commercial production conditions. Although plants 
inoculated with the AMF C. etunicatum were significantly 
smaller than control plants, this reduction did not negatively 
affect tomato yield, which is the most relevant parameter 
for tomato producers. The lack of microbial effects on plant 
nutritional levels can be related to the standard periodic 
application of fertilization so that the plant nutritional needs 
were sufficiently covered, making the role of nutrient acqui-
sition by the beneficial microbes redundant. Indeed, nutri-
tional benefits by interaction with beneficial microorganisms 
are usually visible only under limiting conditions (Martínez-
Medina et al. 2011). Specifically, under reduced fertilization 
dosage, some of the tested microbes such as T. harzianum 
T78, R. irregularis, and F. mosseae have shown to improve 
plant growth, nutrient acquisition, and fruit production in 
melon plants under field conditions, while such effects were 
absent under conventional fertilization conditions (Martínez-
Medina et al. 2011).

Yet, when evaluating the potential of microbial inocu-
lants as biostimulants, crop yield and fruit quality are the 
most relevant parameters, particularly for the economy of 
producers. A recent meta-analysis conducted on 97 peer-
reviewed articles (69% conducted under greenhouse and 
31% under field conditions) that examined the effect of dif-
ferent microbial inoculants—mostly PGPR—on crop pro-
ductivity concluded that microbial inoculants can overall 
improve crop productivity, mainly by stress alleviation or 
by improving nutrient availability for plants (Li et al. 2022). 
Our findings demonstrate that while none of the treatments 
influenced flower production, two fungal treatments, the 
AMF F. mosseae and the fungus T. afroharzianum T22, 
increased the total and marketable tomato yield during the 
cropping season. Increased tomato yield after the application 

of microbial inoculants can result from a better alleviation 
of stress (Li et al. 2022). In agreement with this hypothesis, 
we observed that the two fungal treatments that increased 
yield also caused significant pest reduction of the leaf miner 
T. absoluta (see below). Of particular interest is the fact that 
tomato plants with increased yield did not show a trade-off 
by reducing fruit quality, suggesting a net benefit for the 
farmers under these conditions.

4.2 � Soil microbial effect on tomato resistance 
against pests

Soil-borne beneficial microbes are widely reported to 
improve plant resistance by triggering defenses against a 
broad range of attackers, including pathogens and herbivo-
rous insects (Pieterse et al. 2014). Here, we evaluated the 
impact of microbial inoculation on the incidences of pow-
dery mildew, the phloem and cell content feeders whiteflies 
and thrips respectively, and the leaf miner T. absoluta. While 
we found no effect of soil microbes on powdery mildew 
or whiteflies, T22 and B. bassiana reduced thrip damage, 
while the percentage of plants damaged by the leafminer 
T. absoluta was significantly reduced by most of the fun-
gal inocula. This benefit was not observed upon inoculation 
with PGPR, underscoring the positive outcomes associated 
with fungal inoculations. All three mycorrhizal strains, 
both Trichoderma strains, the EPF M. robertsii, and the M2 
SynCom (fungal consortia including the EPF B. bassiana 
and M. robertsii, and the AMF R. irregularis) reduced the 
natural incidence of T. absoluta, in some cases (R. irregu-
laris and M. robertsii) up to 90%. These results agree with 
recent studies showing induced resistance against T. abso-
luta under controlled conditions by strains of AMF (Shafiei 
et al. 2022), T. afroharzianum (Aprile et al. 2022), and by 
the EPF B. bassiana and M. anisopliae (Giannoulakis et al. 
2023). Regarding AMF, inoculants from in planta cultures—
including fungal propagules, mycorrhizal roots, and rhizos-
pheric soil (F. mosseae, C. etunicatum)—and from in vitro 
monoxenic culture—including only axenic spores (R. irregu-
laris)—significantly increased plant resistance. These results 
support the intrinsic properties of AMF in improving plant 
resistance against this pest.

While AMF and Trichoderma are widely documented to 
induce plant resistance against very diverse pathogens and 
pests (Martínez-Medina et al. 2013; Coppola et al. 2019; 
Sanmartín et al. 2020; Di Lelio et al. 2021; Rivero et al. 
2021; Dejana et al. 2022), only few recent studies have 
demonstrated their negative impact on the performance of 
the leafminer T. absoluta (Aprile et al. 2022; Shafiei et al. 
2022). For EPF, most studies are focused on the direct 
biological control action of fungal conidia resulting in the 
infection or reduction of the performance and fitness of T. 
absoluta (Chouikhi et al. 2022). More recently, evidence 
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on the induction of plant resistance by EPF against insects 
and pathogens is increasing (Raad et al. 2019; Rivas-Franco 
et al. 2020; Rasool et al. 2021; Zitlalpopoca-Hernandez et al. 
2022). This effect is particularly important for concealed 
pest stages such as mining larvae, which are hidden from 
contact with sprayed biopesticides. Thus, the results illus-
trate the ability of AMF, Trichoderma, and EPF to enhance 
plant resistance and reduce T. absoluta incidence in com-
mercial production conditions and, thus, to improve or com-
plement current IPM practices in tomato crop protection.

Worldwide, T. absoluta is a major pest of tomato (Biondi 
et al. 2018), so the present results are encouraging for its 
management. The high reproductive capacity of T. abso-
luta allows for rapid population growth and widespread 
infestation. Moreover, due to its miner lifestyle, the use of 
surface-applied (bio)pesticides is generally inefficient (Abd 
El-Ghany et al. 2016). This insect is notorious for devel-
oping resistance toward chemical pesticides, making con-
trol measures even more challenging (Guedes et al. 2019). 
Hence, applying effective soil microbes that can hinder the 
development of this pest, without reducing fruit quality or 
yield—and even improving it—can be an efficient and sus-
tainable solution for tomato crop protection.

However, under real crop production conditions, several 
different pests and diseases could emerge simultaneously or 
sequentially during the cropping season, challenging crop 
performance and productivity. Thus, we explored the impact 
of each microbial inoculant on the overall pest and disease 
incidence, considering all four aggressors, to gather insights 
into the effect of microbial inoculations on overall tomato 
plants’ resistance against insect pests and pathogens. We 
found that most of the beneficial microbes used in our study 
increased overall plant resistance, prominently reducing the 
overall pest and disease incidence in the crop. Remarkably, 
for some microbial strains, such as the AMF R. irregularis 
and the PGPF T. harzianum, the increased resistance effect 
was as high as 95% when compared to the non-inoculated 
control plants. These findings agree with the general idea 
that IR by beneficial microbes such as AMF, and Tricho-
derma could be effective against a broad range of pests and 
pathogens (Martínez-Medina et al. 2013; Sanmartín et al. 
2020; Di Lelio et al. 2021; Rivero et al. 2021).

The successful implementation of microbe-induced resist-
ance in agriculture does not only rely on its effectiveness in con-
trolling pests and pathogens but also on its compatibility with 
other strategies regularly used in IPM (Stenberg 2017). One 
point of caution would be if the microbes, by modifying plant 
defenses, may negatively impact auxiliary fauna, for example, 
biocontrol insects. As this study was performed under com-
mon pest management practices in Spanish tomato production 
based on IPM standards (Acebedo et al. 2022), we also evalu-
ated the effect of microbial inoculation on the pest predator 
N. tenuis. Our results did not show any negative effects of the 

inoculations on the abundance of the predator, suggesting that 
microbe-induced resistance is compatible with the release of 
this predator, a generalist biocontrol agent, commonly used in 
IPM programs. Nonetheless, the lack of statistical significance 
in N. tenuis abundance (as well as in other parameters consid-
ered in this study) does not fully rule out a biological effect 
of the microbial inoculants on insect predators, or parasitoids 
as was previously shown (Rasmann et al. 2017). Instead, the 
potential presence of subtle or context-dependent effects might 
not have been captured due to limited statistical power (N = 6 
blocks per treatment in this case). Accordingly, we advocate 
for more thorough investigations of the effect of microbial on 
biocontrol agents of crop pests.

4.3 � Limitations of the study and future perspectives

Facilitating and accelerating a wider adoption of microbial-
based products in agriculture are major goals toward improv-
ing agricultural sustainability. As microbial functionalities are 
highly context-dependent, the output of their inoculation can 
be influenced by diverse environmental factors (Lee Díaz et al. 
2021). Accordingly, performing experiments under agronomic 
settings is essential to test microbe efficacy under the fluctu-
ating conditions of real crop production. Our findings dem-
onstrate a positive impact of microbial inoculation within the 
agronomic context of Southern Spain, a key European region 
for tomato production and exportation. However, we argue that 
our results obtained under these specific conditions and farm-
ing practices of plasticulture cannot be directly extrapolated to 
other key agricultural systems. Therefore, additional research 
across a wider range of agricultural settings is essential to sup-
port the reliability of integrating microbial-based solutions into 
different crop management programs. Accordingly, validation 
of these results would require repetition of experiments across 
various years, sites, and settings—such as greenhouses or open 
fields—and using different varieties or crops. This would allow 
us to assess spatiotemporal and management variability and 
plant-microbe specificity.

Moreover, although this study reveals phenotypes of agro-
nomic interest, understanding the mechanisms behind the 
improved plant productivity and resistance against major 
pests is essential for improving reproducibility. The promis-
ing results from this study, along with the imperative for addi-
tional validations and mechanistic studies, encourage further 
research efforts toward optimizing the use of microbial-based 
solutions for environmentally smart farming practices.

Further limitations of our study include evaluating most 
parameters only at a one-time point. This may result in the 
loss of valuable information on the overall impact of microbial 
inoculants on crop performance. Comprehensive monitoring 
at multiple time points, throughout the entire cropping season, 
is desirable, as it would lead to a more detailed understanding 
of plant-microbe interactions and their effects on crops, and it 
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may additionally shed light on specific environmental factors 
that contribute to their context-dependent outcomes.

5 � Conclusions

This study aimed to test the effect of diverse soil-beneficial 
microbes on improving plant health and productivity under 
commercial tomato production settings. We hypothesized that 
even under the optimized crop management conditions of 
commercial agriculture (using greenhouse protection, drip 
fertigation, and integrated pest management), the application 
of microbial inoculants can positively impact crop health and 
yield. By testing microbial strains—previously characterized 
under controlled lab conditions—in agronomic settings, we 
identified beneficial microbes that are competent and func-
tional under commercial growing conditions for prolonged 
periods after their application. We show that soil-inoculated 
microorganisms, particularly fungi, improve tomato crop pro-
ductivity and resistance to relevant pests such as the devastat-
ing leaf miner T. absoluta in commercial settings. Thus, our 
study supports the implementation of microbe-induced resist-
ance in integrated pest management programs. Identifying 
microbes that effectively improve plant health and productiv-
ity in real crop production systems will contribute to faster 
and wider adoption of bioinoculants for environmentally safe 
crop protection, enhancing future agricultural sustainability.
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